Stability estimates for the X-ray transform on simple asymptotically hyperbolic manifolds

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • Nikolas Eptaminitakis

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)487-516
Seitenumfang30
FachzeitschriftPure and Applied Analysis
Jahrgang4
Ausgabenummer3
Frühes Online-Datum4 Dez. 2022
PublikationsstatusVeröffentlicht - 2022

Abstract

We study the normal operator to the geodesic X-ray transform on functions in the setting of simple asymptotically hyperbolic manifolds. We construct a parametrix for the normal operator in the 0-pseudodifferential calculus and use it to show a stability estimate.

ASJC Scopus Sachgebiete

Zitieren

Stability estimates for the X-ray transform on simple asymptotically hyperbolic manifolds. / Eptaminitakis, Nikolas.
in: Pure and Applied Analysis, Jahrgang 4, Nr. 3, 2022, S. 487-516.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Eptaminitakis N. Stability estimates for the X-ray transform on simple asymptotically hyperbolic manifolds. Pure and Applied Analysis. 2022;4(3):487-516. Epub 2022 Dez 4. doi: 10.48550/arXiv.2104.01674, 10.2140/paa.2022.4.487
Eptaminitakis, Nikolas. / Stability estimates for the X-ray transform on simple asymptotically hyperbolic manifolds. in: Pure and Applied Analysis. 2022 ; Jahrgang 4, Nr. 3. S. 487-516.
Download
@article{07eb13fe144a43c9b5bfd1510e77a269,
title = "Stability estimates for the X-ray transform on simple asymptotically hyperbolic manifolds",
abstract = "We study the normal operator to the geodesic X-ray transform on functions in the setting of simple asymptotically hyperbolic manifolds. We construct a parametrix for the normal operator in the 0-pseudodifferential calculus and use it to show a stability estimate.",
keywords = "0-calculus, asymptotically hyperbolic manifolds, normal operator, stability, X-ray transform",
author = "Nikolas Eptaminitakis",
note = "Publisher Copyright: {\textcopyright} 2022 Mathematical Sciences Publishers.",
year = "2022",
doi = "10.48550/arXiv.2104.01674",
language = "English",
volume = "4",
pages = "487--516",
number = "3",

}

Download

TY - JOUR

T1 - Stability estimates for the X-ray transform on simple asymptotically hyperbolic manifolds

AU - Eptaminitakis, Nikolas

N1 - Publisher Copyright: © 2022 Mathematical Sciences Publishers.

PY - 2022

Y1 - 2022

N2 - We study the normal operator to the geodesic X-ray transform on functions in the setting of simple asymptotically hyperbolic manifolds. We construct a parametrix for the normal operator in the 0-pseudodifferential calculus and use it to show a stability estimate.

AB - We study the normal operator to the geodesic X-ray transform on functions in the setting of simple asymptotically hyperbolic manifolds. We construct a parametrix for the normal operator in the 0-pseudodifferential calculus and use it to show a stability estimate.

KW - 0-calculus

KW - asymptotically hyperbolic manifolds

KW - normal operator

KW - stability

KW - X-ray transform

UR - http://www.scopus.com/inward/record.url?scp=85180802109&partnerID=8YFLogxK

U2 - 10.48550/arXiv.2104.01674

DO - 10.48550/arXiv.2104.01674

M3 - Article

VL - 4

SP - 487

EP - 516

JO - Pure and Applied Analysis

JF - Pure and Applied Analysis

SN - 2578-5885

IS - 3

ER -