Some uniform effective results on André--Oort for sums of powers in ℂ^n

Publikation: Arbeitspapier/PreprintPreprint

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seitenumfang27
PublikationsstatusElektronisch veröffentlicht (E-Pub) - 13 Mai 2024

Abstract

We prove an Andr\'e--Oort-type result for a family of hypersurfaces in $\mathbb{C}^n$ that is both uniform and effective. Let $K_*$ denote the single exceptional imaginary quadratic field which occurs in the Siegel--Tatuzawa lower bound for the class number. We prove that, for $m, n \in \mathbb{Z}_{>0}$, there exists an effective constant $c(m, n)>0$ with the following property: if pairwise distinct singular moduli $x_1, \ldots, x_n$ with respective discriminants $\Delta_1, \ldots, \Delta_n$ are such that $a_1 x_1^m + \ldots + a_n x_n^m \in \mathbb{Q}$ for some $a_1, \ldots, a_n \in \mathbb{Q} \setminus \{0\}$ and $\# \{ \Delta_i : \mathbb{Q}(\sqrt{\Delta_i}) = K_*\} \leq 1$, then $\max_i \lvert \Delta_i \rvert \leq c(m, n)$. In addition, we prove an unconditional and completely explicit version of this result when $(m, n) = (1, 3)$ and thereby determine all the triples $(x_1, x_2, x_3)$ of singular moduli such that $a_1 x_1 + a_2 x_2 + a_3 x_3 \in \mathbb{Q}$ for some $a_1, a_2, a_3 \in \mathbb{Q} \setminus \{0\}$.

Zitieren

Some uniform effective results on André--Oort for sums of powers in ℂ^n. / Fowler, Guy .
2024.

Publikation: Arbeitspapier/PreprintPreprint

Fowler G. Some uniform effective results on André--Oort for sums of powers in ℂ^n. 2024 Mai 13. Epub 2024 Mai 13. doi: https://doi.org/10.48550/arXiv.2405.06456
Download
@techreport{6e5cfe130ccf46fca745d9f50343f1f0,
title = "Some uniform effective results on Andr{\'e}--Oort for sums of powers in ℂ^n",
abstract = "We prove an Andr\'e--Oort-type result for a family of hypersurfaces in $\mathbb{C}^n$ that is both uniform and effective. Let $K_*$ denote the single exceptional imaginary quadratic field which occurs in the Siegel--Tatuzawa lower bound for the class number. We prove that, for $m, n \in \mathbb{Z}_{>0}$, there exists an effective constant $c(m, n)>0$ with the following property: if pairwise distinct singular moduli $x_1, \ldots, x_n$ with respective discriminants $\Delta_1, \ldots, \Delta_n$ are such that $a_1 x_1^m + \ldots + a_n x_n^m \in \mathbb{Q}$ for some $a_1, \ldots, a_n \in \mathbb{Q} \setminus \{0\}$ and $\# \{ \Delta_i : \mathbb{Q}(\sqrt{\Delta_i}) = K_*\} \leq 1$, then $\max_i \lvert \Delta_i \rvert \leq c(m, n)$. In addition, we prove an unconditional and completely explicit version of this result when $(m, n) = (1, 3)$ and thereby determine all the triples $(x_1, x_2, x_3)$ of singular moduli such that $a_1 x_1 + a_2 x_2 + a_3 x_3 \in \mathbb{Q}$ for some $a_1, a_2, a_3 \in \mathbb{Q} \setminus \{0\}$.",
keywords = "math.NT",
author = "Guy Fowler",
year = "2024",
month = may,
day = "13",
doi = "https://doi.org/10.48550/arXiv.2405.06456",
language = "English",
type = "WorkingPaper",

}

Download

TY - UNPB

T1 - Some uniform effective results on André--Oort for sums of powers in ℂ^n

AU - Fowler, Guy

PY - 2024/5/13

Y1 - 2024/5/13

N2 - We prove an Andr\'e--Oort-type result for a family of hypersurfaces in $\mathbb{C}^n$ that is both uniform and effective. Let $K_*$ denote the single exceptional imaginary quadratic field which occurs in the Siegel--Tatuzawa lower bound for the class number. We prove that, for $m, n \in \mathbb{Z}_{>0}$, there exists an effective constant $c(m, n)>0$ with the following property: if pairwise distinct singular moduli $x_1, \ldots, x_n$ with respective discriminants $\Delta_1, \ldots, \Delta_n$ are such that $a_1 x_1^m + \ldots + a_n x_n^m \in \mathbb{Q}$ for some $a_1, \ldots, a_n \in \mathbb{Q} \setminus \{0\}$ and $\# \{ \Delta_i : \mathbb{Q}(\sqrt{\Delta_i}) = K_*\} \leq 1$, then $\max_i \lvert \Delta_i \rvert \leq c(m, n)$. In addition, we prove an unconditional and completely explicit version of this result when $(m, n) = (1, 3)$ and thereby determine all the triples $(x_1, x_2, x_3)$ of singular moduli such that $a_1 x_1 + a_2 x_2 + a_3 x_3 \in \mathbb{Q}$ for some $a_1, a_2, a_3 \in \mathbb{Q} \setminus \{0\}$.

AB - We prove an Andr\'e--Oort-type result for a family of hypersurfaces in $\mathbb{C}^n$ that is both uniform and effective. Let $K_*$ denote the single exceptional imaginary quadratic field which occurs in the Siegel--Tatuzawa lower bound for the class number. We prove that, for $m, n \in \mathbb{Z}_{>0}$, there exists an effective constant $c(m, n)>0$ with the following property: if pairwise distinct singular moduli $x_1, \ldots, x_n$ with respective discriminants $\Delta_1, \ldots, \Delta_n$ are such that $a_1 x_1^m + \ldots + a_n x_n^m \in \mathbb{Q}$ for some $a_1, \ldots, a_n \in \mathbb{Q} \setminus \{0\}$ and $\# \{ \Delta_i : \mathbb{Q}(\sqrt{\Delta_i}) = K_*\} \leq 1$, then $\max_i \lvert \Delta_i \rvert \leq c(m, n)$. In addition, we prove an unconditional and completely explicit version of this result when $(m, n) = (1, 3)$ and thereby determine all the triples $(x_1, x_2, x_3)$ of singular moduli such that $a_1 x_1 + a_2 x_2 + a_3 x_3 \in \mathbb{Q}$ for some $a_1, a_2, a_3 \in \mathbb{Q} \setminus \{0\}$.

KW - math.NT

U2 - https://doi.org/10.48550/arXiv.2405.06456

DO - https://doi.org/10.48550/arXiv.2405.06456

M3 - Preprint

BT - Some uniform effective results on André--Oort for sums of powers in ℂ^n

ER -

Von denselben Autoren