Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 3451930 |
Fachzeitschrift | Structural Control and Health Monitoring |
Jahrgang | 2025 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - 23 Mai 2025 |
Abstract
This study aims to evaluate sequences of raw time series using an autoencoder structure for unsupervised damage detection and localization under varying environmental conditions (ECs). When it comes to structural health monitoring (SHM) for real-world applications, data-driven models need to improve sensitivity and robustness toward damage due to the EC-dependent variance. For systems situated outdoors, changing ECs affects the stiffness properties without causing permanent alterations to the structure. Applying data normalization strategies to consider these natural variations is not easy to conduct and is unfavorable for sensitivity regarding damage. To address these challenges, the model’s input variables are non-standardized to avoid input-related modifications and to feature a higher sensitivity toward structural changes. The autoencoder’s ability to capture structural variations caused by ECs and to handle non-standardized time series data makes it favorable for real-world applications. By quantifying the input-residual correlations, sensitivity, and robustness can be improved; no adjustments to the model have to be made. The autoencoder’s black-box nature is inspected by analyzing a linear dynamic 8DOF system and the Leibniz University Structure for Monitoring (LUMO). The neural network’s structure is identified by tracking the residual correlation. Here, a common test statistic of a whiteness test is used to find an optimal choice of the bottleneck dimension. Significantly increased robustness and sensitivity toward damage when evaluating the input-residual correlations instead of the reconstruction error is observed. To capture the temperature-dependent structural response for experimental validation, 10-min data sets of different structural temperatures are given to the neural network during training. It was derived that for damage detection, an amplitude-related normalization is inevitable due to the different excitation intensities in real life, which was carried out using input-residual correlations quantified by a Pearson coefficient. Considering the results obtained, autoencoders with non-standardized time series and input-residual correlations demonstrate a potent tool for vibration-based damage identification.
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Tief- und Ingenieurbau
- Ingenieurwesen (insg.)
- Bauwesen
- Ingenieurwesen (insg.)
- Werkstoffmechanik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Structural Control and Health Monitoring, Jahrgang 2025, Nr. 1, 3451930, 23.05.2025.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Robust Damage Detection and Localization Under Varying Environmental Conditions Using Neural Networks and Input-Residual Correlations
AU - Römgens, Niklas
AU - Abbassi, Abderrahim
AU - Fürll, Florian
AU - Grießmann, Tanja
AU - Rolfes, Raimund
AU - Marx, Steffen
N1 - Publisher Copyright: Copyright © 2025 Niklas Römgens et al. Structural Control and Health Monitoring published by John Wiley & Sons Ltd.
PY - 2025/5/23
Y1 - 2025/5/23
N2 - This study aims to evaluate sequences of raw time series using an autoencoder structure for unsupervised damage detection and localization under varying environmental conditions (ECs). When it comes to structural health monitoring (SHM) for real-world applications, data-driven models need to improve sensitivity and robustness toward damage due to the EC-dependent variance. For systems situated outdoors, changing ECs affects the stiffness properties without causing permanent alterations to the structure. Applying data normalization strategies to consider these natural variations is not easy to conduct and is unfavorable for sensitivity regarding damage. To address these challenges, the model’s input variables are non-standardized to avoid input-related modifications and to feature a higher sensitivity toward structural changes. The autoencoder’s ability to capture structural variations caused by ECs and to handle non-standardized time series data makes it favorable for real-world applications. By quantifying the input-residual correlations, sensitivity, and robustness can be improved; no adjustments to the model have to be made. The autoencoder’s black-box nature is inspected by analyzing a linear dynamic 8DOF system and the Leibniz University Structure for Monitoring (LUMO). The neural network’s structure is identified by tracking the residual correlation. Here, a common test statistic of a whiteness test is used to find an optimal choice of the bottleneck dimension. Significantly increased robustness and sensitivity toward damage when evaluating the input-residual correlations instead of the reconstruction error is observed. To capture the temperature-dependent structural response for experimental validation, 10-min data sets of different structural temperatures are given to the neural network during training. It was derived that for damage detection, an amplitude-related normalization is inevitable due to the different excitation intensities in real life, which was carried out using input-residual correlations quantified by a Pearson coefficient. Considering the results obtained, autoencoders with non-standardized time series and input-residual correlations demonstrate a potent tool for vibration-based damage identification.
AB - This study aims to evaluate sequences of raw time series using an autoencoder structure for unsupervised damage detection and localization under varying environmental conditions (ECs). When it comes to structural health monitoring (SHM) for real-world applications, data-driven models need to improve sensitivity and robustness toward damage due to the EC-dependent variance. For systems situated outdoors, changing ECs affects the stiffness properties without causing permanent alterations to the structure. Applying data normalization strategies to consider these natural variations is not easy to conduct and is unfavorable for sensitivity regarding damage. To address these challenges, the model’s input variables are non-standardized to avoid input-related modifications and to feature a higher sensitivity toward structural changes. The autoencoder’s ability to capture structural variations caused by ECs and to handle non-standardized time series data makes it favorable for real-world applications. By quantifying the input-residual correlations, sensitivity, and robustness can be improved; no adjustments to the model have to be made. The autoencoder’s black-box nature is inspected by analyzing a linear dynamic 8DOF system and the Leibniz University Structure for Monitoring (LUMO). The neural network’s structure is identified by tracking the residual correlation. Here, a common test statistic of a whiteness test is used to find an optimal choice of the bottleneck dimension. Significantly increased robustness and sensitivity toward damage when evaluating the input-residual correlations instead of the reconstruction error is observed. To capture the temperature-dependent structural response for experimental validation, 10-min data sets of different structural temperatures are given to the neural network during training. It was derived that for damage detection, an amplitude-related normalization is inevitable due to the different excitation intensities in real life, which was carried out using input-residual correlations quantified by a Pearson coefficient. Considering the results obtained, autoencoders with non-standardized time series and input-residual correlations demonstrate a potent tool for vibration-based damage identification.
KW - autoencoder
KW - data-driven model
KW - PCA
KW - structural health monitoring
KW - unsupervised damage detection and localization
UR - http://www.scopus.com/inward/record.url?scp=105006741879&partnerID=8YFLogxK
U2 - 10.1155/stc/3451930
DO - 10.1155/stc/3451930
M3 - Article
AN - SCOPUS:105006741879
VL - 2025
JO - Structural Control and Health Monitoring
JF - Structural Control and Health Monitoring
SN - 1545-2255
IS - 1
M1 - 3451930
ER -