Rigidity of modular morphisms via Fujita decomposition

Publikation: Arbeitspapier/PreprintPreprint

Autorschaft

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
PublikationsstatusElektronisch veröffentlicht (E-Pub) - 15 Sept. 2024

Abstract

In this note we prove that the Torelli, Prym and Spin-Torelli morphisms, as well as covering maps between moduli stacks of projective curves can not be deformed. The proofs use properties of the Fujita decomposition of the Hodge bundle of families of curves.

Zitieren

Rigidity of modular morphisms via Fujita decomposition. / Codogni, Giulio; González-Alonso, Víctor; Torelli, Sara.
2024.

Publikation: Arbeitspapier/PreprintPreprint

Codogni, G., González-Alonso, V., & Torelli, S. (2024). Rigidity of modular morphisms via Fujita decomposition. Vorabveröffentlichung online.
Codogni G, González-Alonso V, Torelli S. Rigidity of modular morphisms via Fujita decomposition. 2024 Sep 15. Epub 2024 Sep 15.
Download
@techreport{12f0668554384e8ebe54b727d8c56db2,
title = "Rigidity of modular morphisms via Fujita decomposition",
abstract = " In this note we prove that the Torelli, Prym and Spin-Torelli morphisms, as well as covering maps between moduli stacks of projective curves can not be deformed. The proofs use properties of the Fujita decomposition of the Hodge bundle of families of curves. ",
keywords = "math.AG, 14H10, 32G20",
author = "Giulio Codogni and V{\'i}ctor Gonz{\'a}lez-Alonso and Sara Torelli",
year = "2024",
month = sep,
day = "15",
language = "English",
type = "WorkingPaper",

}

Download

TY - UNPB

T1 - Rigidity of modular morphisms via Fujita decomposition

AU - Codogni, Giulio

AU - González-Alonso, Víctor

AU - Torelli, Sara

PY - 2024/9/15

Y1 - 2024/9/15

N2 - In this note we prove that the Torelli, Prym and Spin-Torelli morphisms, as well as covering maps between moduli stacks of projective curves can not be deformed. The proofs use properties of the Fujita decomposition of the Hodge bundle of families of curves.

AB - In this note we prove that the Torelli, Prym and Spin-Torelli morphisms, as well as covering maps between moduli stacks of projective curves can not be deformed. The proofs use properties of the Fujita decomposition of the Hodge bundle of families of curves.

KW - math.AG

KW - 14H10, 32G20

M3 - Preprint

BT - Rigidity of modular morphisms via Fujita decomposition

ER -

Von denselben Autoren