Loading [MathJax]/extensions/tex2jax.js

Remarks on Milnor K-theory and Tate's conjecture for divisors

Publikation: Arbeitspapier/PreprintPreprint

Autorschaft

  • Stefan Schreieder

Organisationseinheiten

Details

OriginalspracheEnglisch
PublikationsstatusElektronisch veröffentlicht (E-Pub) - 26 Juni 2024

Abstract

We show that the Tate conjecture for divisors over a finite field F is equivalent to an explicit algebraic problem about the third Milnor K-group of the function field F¯(x,y,z) in three variables over F¯.

Zitieren

Remarks on Milnor K-theory and Tate's conjecture for divisors. / Schreieder, Stefan.
2024.

Publikation: Arbeitspapier/PreprintPreprint

Schreieder S. Remarks on Milnor K-theory and Tate's conjecture for divisors. 2024 Jun 26. Epub 2024 Jun 26. doi: 10.48550/arXiv.2406.18706
Download
@techreport{37fe113973364a09af8e13a0af4187f0,
title = "Remarks on Milnor K-theory and Tate's conjecture for divisors",
abstract = " We show that the Tate conjecture for divisors over a finite field $\mathbb F$ is equivalent to an explicit algebraic problem about the third Milnor K-group of the function field $\bar {\mathbb F}(x,y,z)$ in three variables over $\bar {\mathbb F}$. ",
keywords = "math.AG, math.KT, math.NT, 14C15, 14C25, 14C35",
author = "Stefan Schreieder",
note = "22 pages",
year = "2024",
month = jun,
day = "26",
doi = "10.48550/arXiv.2406.18706",
language = "English",
type = "WorkingPaper",

}

Download

TY - UNPB

T1 - Remarks on Milnor K-theory and Tate's conjecture for divisors

AU - Schreieder, Stefan

N1 - 22 pages

PY - 2024/6/26

Y1 - 2024/6/26

N2 - We show that the Tate conjecture for divisors over a finite field $\mathbb F$ is equivalent to an explicit algebraic problem about the third Milnor K-group of the function field $\bar {\mathbb F}(x,y,z)$ in three variables over $\bar {\mathbb F}$.

AB - We show that the Tate conjecture for divisors over a finite field $\mathbb F$ is equivalent to an explicit algebraic problem about the third Milnor K-group of the function field $\bar {\mathbb F}(x,y,z)$ in three variables over $\bar {\mathbb F}$.

KW - math.AG

KW - math.KT

KW - math.NT

KW - 14C15, 14C25, 14C35

U2 - 10.48550/arXiv.2406.18706

DO - 10.48550/arXiv.2406.18706

M3 - Preprint

BT - Remarks on Milnor K-theory and Tate's conjecture for divisors

ER -