Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 231-241 |
Seitenumfang | 11 |
Fachzeitschrift | GEOMETRIAE DEDICATA |
Jahrgang | 113 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - 1 Juni 2005 |
Abstract
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: GEOMETRIAE DEDICATA, Jahrgang 113, Nr. 1, 01.06.2005, S. 231-241.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Radial index and Euler obstruction of a 1-form on a singular variety
AU - Ebeling, Wolfgang
AU - Gusein-Zade, Sabir M.
N1 - Funding information: Partially supported by the DFG-programme “Global methods in complex geometry” (Eb 102/4–2), grants RFBR–04–01–00762, NSh–1972.2003.1.
PY - 2005/6/1
Y1 - 2005/6/1
N2 - A notion of the radial index of an isolated singular point of a 1-form on a singular (real or complex) variety is discussed. For the differential of a function it is related to the Euler characteristic of the Milnor fibre of the function. A connection between the radial index and the local Euler obstruction of a 1-form is described. This gives an expression for the local Euler obstruction of the differential of a function in terms of Euler characteristics of some Milnor fibres.
AB - A notion of the radial index of an isolated singular point of a 1-form on a singular (real or complex) variety is discussed. For the differential of a function it is related to the Euler characteristic of the Milnor fibre of the function. A connection between the radial index and the local Euler obstruction of a 1-form is described. This gives an expression for the local Euler obstruction of the differential of a function in terms of Euler characteristics of some Milnor fibres.
KW - 1-forms
KW - Euler obstruction
KW - Index
KW - Singular points
KW - Singular varieties
UR - http://www.scopus.com/inward/record.url?scp=25444477596&partnerID=8YFLogxK
U2 - 10.1007/s10711-005-2184-1
DO - 10.1007/s10711-005-2184-1
M3 - Article
AN - SCOPUS:25444477596
VL - 113
SP - 231
EP - 241
JO - GEOMETRIAE DEDICATA
JF - GEOMETRIAE DEDICATA
SN - 0046-5755
IS - 1
ER -