Loading [MathJax]/extensions/tex2jax.js

Quadratic twists of tiling number elliptic curves

Publikation: Arbeitspapier/PreprintPreprint

Autorschaft

  • Keqin Feng
  • Qiuyue Liu
  • Jinzhao Pan
  • Ye Tian

Details

OriginalspracheEnglisch
PublikationsstatusElektronisch veröffentlicht (E-Pub) - 18 Mai 2024

Abstract

A positive integer $n$ is called a tiling number if the equilateral triangle can be dissected into $nk^2$ congruent triangles for some integer $k$. An integer $n>3$ is tiling number if and only if at least one of the elliptic curves $E^{(\pm n)}:\pm ny^2=x(x-1)(x+3)$ has positive Mordell-Weil rank. Let $A$ denote one of the two curves. In this paper, using Waldspurger formula and an induction method, for $n\equiv 3,7\mod 24$ positive square-free, as well as some other residue classes, we express the parity of analytic Sha of $A$ in terms of the genus number $g(m):=\#2\mathrm{Cl}(\mathbb{Q}(\sqrt{-m}))$ as $m$ runs over factors of $n$. Together with $2$-descent method which express $\mathrm{dim}_{\mathbb{F}_2}\mathrm{Sel}_2(A/\mathbb{Q})/A[2]$ in terms of the corank of a matrix of $\mathbb{F}_2$-coefficients, we show that for $n\equiv 3,7\mod 24$ positive square-free, the analytic Sha of $A$ being odd is equivalent to that $\mathrm{Sel}_2(A/\mathbb{Q})/A[2]$ being trivial, as predicted by the BSD conjecture. We also show that, among the residue classes $3$, resp. $7\mod 24$, the subset of $n$ such that both of $E^{(n)}$ and $E^{(-n)}$ have analytic Sha odd is of limit density $0.288\cdots$ and $0.144\cdots$, respectively, in particular, they are non-tiling numbers. This exhibits two new phenomena on tiling number elliptic curves: firstly, the limit density is different from the general phenomenon on elliptic curves predicted by Bhargava-Kane-Lenstra-Poonen-Rains; secondly, the joint distribution has different behavior among different residue classes.

Zitieren

Quadratic twists of tiling number elliptic curves. / Feng, Keqin; Liu, Qiuyue; Pan, Jinzhao et al.
2024.

Publikation: Arbeitspapier/PreprintPreprint

Feng, K., Liu, Q., Pan, J., & Tian, Y. (2024). Quadratic twists of tiling number elliptic curves. Vorabveröffentlichung online. https://doi.org/10.48550/arXiv.2405.11132
Feng K, Liu Q, Pan J, Tian Y. Quadratic twists of tiling number elliptic curves. 2024 Mai 18. Epub 2024 Mai 18. doi: 10.48550/arXiv.2405.11132
Feng, Keqin ; Liu, Qiuyue ; Pan, Jinzhao et al. / Quadratic twists of tiling number elliptic curves. 2024.
Download
@techreport{540d19ef873f487d8f0dd91f4c4dad0c,
title = "Quadratic twists of tiling number elliptic curves",
abstract = " A positive integer $n$ is called a tiling number if the equilateral triangle can be dissected into $nk^2$ congruent triangles for some integer $k$. An integer $n>3$ is tiling number if and only if at least one of the elliptic curves $E^{(\pm n)}:\pm ny^2=x(x-1)(x+3)$ has positive Mordell-Weil rank. Let $A$ denote one of the two curves. In this paper, using Waldspurger formula and an induction method, for $n\equiv 3,7\mod 24$ positive square-free, as well as some other residue classes, we express the parity of analytic Sha of $A$ in terms of the genus number $g(m):=\#2\mathrm{Cl}(\mathbb{Q}(\sqrt{-m}))$ as $m$ runs over factors of $n$. Together with $2$-descent method which express $\mathrm{dim}_{\mathbb{F}_2}\mathrm{Sel}_2(A/\mathbb{Q})/A[2]$ in terms of the corank of a matrix of $\mathbb{F}_2$-coefficients, we show that for $n\equiv 3,7\mod 24$ positive square-free, the analytic Sha of $A$ being odd is equivalent to that $\mathrm{Sel}_2(A/\mathbb{Q})/A[2]$ being trivial, as predicted by the BSD conjecture. We also show that, among the residue classes $3$, resp. $7\mod 24$, the subset of $n$ such that both of $E^{(n)}$ and $E^{(-n)}$ have analytic Sha odd is of limit density $0.288\cdots$ and $0.144\cdots$, respectively, in particular, they are non-tiling numbers. This exhibits two new phenomena on tiling number elliptic curves: firstly, the limit density is different from the general phenomenon on elliptic curves predicted by Bhargava-Kane-Lenstra-Poonen-Rains; secondly, the joint distribution has different behavior among different residue classes. ",
keywords = "math.NT, 11G05 (Primary) 11G40 (Secondary)",
author = "Keqin Feng and Qiuyue Liu and Jinzhao Pan and Ye Tian",
note = "25 pages",
year = "2024",
month = may,
day = "18",
doi = "10.48550/arXiv.2405.11132",
language = "English",
type = "WorkingPaper",

}

Download

TY - UNPB

T1 - Quadratic twists of tiling number elliptic curves

AU - Feng, Keqin

AU - Liu, Qiuyue

AU - Pan, Jinzhao

AU - Tian, Ye

N1 - 25 pages

PY - 2024/5/18

Y1 - 2024/5/18

N2 - A positive integer $n$ is called a tiling number if the equilateral triangle can be dissected into $nk^2$ congruent triangles for some integer $k$. An integer $n>3$ is tiling number if and only if at least one of the elliptic curves $E^{(\pm n)}:\pm ny^2=x(x-1)(x+3)$ has positive Mordell-Weil rank. Let $A$ denote one of the two curves. In this paper, using Waldspurger formula and an induction method, for $n\equiv 3,7\mod 24$ positive square-free, as well as some other residue classes, we express the parity of analytic Sha of $A$ in terms of the genus number $g(m):=\#2\mathrm{Cl}(\mathbb{Q}(\sqrt{-m}))$ as $m$ runs over factors of $n$. Together with $2$-descent method which express $\mathrm{dim}_{\mathbb{F}_2}\mathrm{Sel}_2(A/\mathbb{Q})/A[2]$ in terms of the corank of a matrix of $\mathbb{F}_2$-coefficients, we show that for $n\equiv 3,7\mod 24$ positive square-free, the analytic Sha of $A$ being odd is equivalent to that $\mathrm{Sel}_2(A/\mathbb{Q})/A[2]$ being trivial, as predicted by the BSD conjecture. We also show that, among the residue classes $3$, resp. $7\mod 24$, the subset of $n$ such that both of $E^{(n)}$ and $E^{(-n)}$ have analytic Sha odd is of limit density $0.288\cdots$ and $0.144\cdots$, respectively, in particular, they are non-tiling numbers. This exhibits two new phenomena on tiling number elliptic curves: firstly, the limit density is different from the general phenomenon on elliptic curves predicted by Bhargava-Kane-Lenstra-Poonen-Rains; secondly, the joint distribution has different behavior among different residue classes.

AB - A positive integer $n$ is called a tiling number if the equilateral triangle can be dissected into $nk^2$ congruent triangles for some integer $k$. An integer $n>3$ is tiling number if and only if at least one of the elliptic curves $E^{(\pm n)}:\pm ny^2=x(x-1)(x+3)$ has positive Mordell-Weil rank. Let $A$ denote one of the two curves. In this paper, using Waldspurger formula and an induction method, for $n\equiv 3,7\mod 24$ positive square-free, as well as some other residue classes, we express the parity of analytic Sha of $A$ in terms of the genus number $g(m):=\#2\mathrm{Cl}(\mathbb{Q}(\sqrt{-m}))$ as $m$ runs over factors of $n$. Together with $2$-descent method which express $\mathrm{dim}_{\mathbb{F}_2}\mathrm{Sel}_2(A/\mathbb{Q})/A[2]$ in terms of the corank of a matrix of $\mathbb{F}_2$-coefficients, we show that for $n\equiv 3,7\mod 24$ positive square-free, the analytic Sha of $A$ being odd is equivalent to that $\mathrm{Sel}_2(A/\mathbb{Q})/A[2]$ being trivial, as predicted by the BSD conjecture. We also show that, among the residue classes $3$, resp. $7\mod 24$, the subset of $n$ such that both of $E^{(n)}$ and $E^{(-n)}$ have analytic Sha odd is of limit density $0.288\cdots$ and $0.144\cdots$, respectively, in particular, they are non-tiling numbers. This exhibits two new phenomena on tiling number elliptic curves: firstly, the limit density is different from the general phenomenon on elliptic curves predicted by Bhargava-Kane-Lenstra-Poonen-Rains; secondly, the joint distribution has different behavior among different residue classes.

KW - math.NT

KW - 11G05 (Primary) 11G40 (Secondary)

U2 - 10.48550/arXiv.2405.11132

DO - 10.48550/arXiv.2405.11132

M3 - Preprint

BT - Quadratic twists of tiling number elliptic curves

ER -