Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 26 |
Fachzeitschrift | Manuscripta Mathematica |
Jahrgang | 176 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - 20 März 2025 |
Abstract
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Manuscripta Mathematica, Jahrgang 176, Nr. 2, 26, 20.03.2025.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Quadratic Euler Characteristic of Symmetric Powers of Curves
AU - Bröring, Lukas F.
AU - Viergever, Anna M.
PY - 2025/3/20
Y1 - 2025/3/20
N2 - We compute the quadratic Euler characteristic of the symmetric powers of a smooth, projective curve over any field $k$ that is not of characteristic two, using the Motivic Gauss-Bonnet Theorem of Levine-Raksit. As an application, we show over a field of characteristic zero that the power structure on the Grothendieck-Witt ring introduced by Pajwani-P\'al computes the compactly supported $\mathbb{A}^1$-Euler characteristic of symmetric powers for all curves.
AB - We compute the quadratic Euler characteristic of the symmetric powers of a smooth, projective curve over any field $k$ that is not of characteristic two, using the Motivic Gauss-Bonnet Theorem of Levine-Raksit. As an application, we show over a field of characteristic zero that the power structure on the Grothendieck-Witt ring introduced by Pajwani-P\'al computes the compactly supported $\mathbb{A}^1$-Euler characteristic of symmetric powers for all curves.
KW - math.AG
KW - 14G27, 14N10, 14F42
UR - http://www.scopus.com/inward/record.url?scp=105000486388&partnerID=8YFLogxK
U2 - 10.1007/s00229-025-01623-0
DO - 10.1007/s00229-025-01623-0
M3 - Article
VL - 176
JO - Manuscripta Mathematica
JF - Manuscripta Mathematica
SN - 0025-2611
IS - 2
M1 - 26
ER -