Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1889-1908 |
Seitenumfang | 20 |
Fachzeitschrift | Journal of forecasting |
Jahrgang | 42 |
Ausgabenummer | 7 |
Frühes Online-Datum | 2 Mai 2023 |
Publikationsstatus | Veröffentlicht - 1 Okt. 2023 |
Abstract
We develop methods to obtain optimal forecast under long memory in the presence of a discrete structural break based on different weighting schemes for the observations. We observe significant changes in the forecasts when long-range dependence is taken into account. Using Monte Carlo simulations, we confirm that our methods substantially improve the forecasting performance under long memory. We further present an empirical application to inflation rates that emphasizes the importance of our methods.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Modellierung und Simulation
- Informatik (insg.)
- Angewandte Informatik
- Betriebswirtschaft, Management und Rechnungswesen (insg.)
- Strategie und Management
- Entscheidungswissenschaften (insg.)
- Statistik, Wahrscheinlichkeit und Ungewissheit
- Entscheidungswissenschaften (insg.)
- Managementlehre und Operations Resarch
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of forecasting, Jahrgang 42, Nr. 7, 01.10.2023, S. 1889-1908.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Optimal forecasts in the presence of discrete structural breaks under long memory
AU - Paza Mboya, Mwasi
AU - Sibbertsen, Philipp
N1 - Funding Information: We are indepted to Simon Wingert, the participants of the conference of Deutsche Arbeitsgemeinschaft Statistik 2022 in Hamburg, an anonymous referee, and Siem Jan Koopman for helpful comments and discussion. The financial support of Deutsche Forschungsgemeinschaft is gratefully acknowledged. Open Access funding enabled and organized by Projekt DEAL.
PY - 2023/10/1
Y1 - 2023/10/1
N2 - We develop methods to obtain optimal forecast under long memory in the presence of a discrete structural break based on different weighting schemes for the observations. We observe significant changes in the forecasts when long-range dependence is taken into account. Using Monte Carlo simulations, we confirm that our methods substantially improve the forecasting performance under long memory. We further present an empirical application to inflation rates that emphasizes the importance of our methods.
AB - We develop methods to obtain optimal forecast under long memory in the presence of a discrete structural break based on different weighting schemes for the observations. We observe significant changes in the forecasts when long-range dependence is taken into account. Using Monte Carlo simulations, we confirm that our methods substantially improve the forecasting performance under long memory. We further present an empirical application to inflation rates that emphasizes the importance of our methods.
KW - ARFIMA model
KW - forecasting
KW - long memory
KW - optimal weight
KW - structural break
UR - http://www.scopus.com/inward/record.url?scp=85158063942&partnerID=8YFLogxK
U2 - 10.1002/for.2988
DO - 10.1002/for.2988
M3 - Article
AN - SCOPUS:85158063942
VL - 42
SP - 1889
EP - 1908
JO - Journal of forecasting
JF - Journal of forecasting
SN - 0277-6693
IS - 7
ER -