On hermite interpolation by Cauchy-Vandermonde systems: The Lagrange formula, the adjoint and the inverse of a Cauchy-Vandermonde matrix

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • G. Mühlbach

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)147-159
Seitenumfang13
FachzeitschriftJournal of Computational and Applied Mathematics
Jahrgang67
Ausgabenummer1
PublikationsstatusVeröffentlicht - 20 Feb. 1996

Abstract

For a given Cauchy-Vandermonde system and for given multiple nodes a Lagrange-type formula for the interpolant is derived, interpolating a given function in the sense of Hermite. We give explicit analytic representations of the basic functions in terms of the nodes and prescribed poles. They are used to derive formulas for the entries of the adjoint of the confluent Cauchy-Vandermonde matrix corresponding to the interpolation problem thus providing an explicit representation of its inverse.

ASJC Scopus Sachgebiete

Zitieren

On hermite interpolation by Cauchy-Vandermonde systems: The Lagrange formula, the adjoint and the inverse of a Cauchy-Vandermonde matrix. / Mühlbach, G.
in: Journal of Computational and Applied Mathematics, Jahrgang 67, Nr. 1, 20.02.1996, S. 147-159.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Download
@article{c11ec3092a9e4a25ae43857ba6529a02,
title = "On hermite interpolation by Cauchy-Vandermonde systems: The Lagrange formula, the adjoint and the inverse of a Cauchy-Vandermonde matrix",
abstract = "For a given Cauchy-Vandermonde system and for given multiple nodes a Lagrange-type formula for the interpolant is derived, interpolating a given function in the sense of Hermite. We give explicit analytic representations of the basic functions in terms of the nodes and prescribed poles. They are used to derive formulas for the entries of the adjoint of the confluent Cauchy-Vandermonde matrix corresponding to the interpolation problem thus providing an explicit representation of its inverse.",
keywords = "Cauchy-Vandermonde systems, Hermite interpolation, Inverse of a Cauchy-Vandermonde matrix",
author = "G. M{\"u}hlbach",
year = "1996",
month = feb,
day = "20",
doi = "10.1016/0377-0427(94)00116-2",
language = "English",
volume = "67",
pages = "147--159",
journal = "Journal of Computational and Applied Mathematics",
issn = "0377-0427",
publisher = "Elsevier",
number = "1",

}

Download

TY - JOUR

T1 - On hermite interpolation by Cauchy-Vandermonde systems

T2 - The Lagrange formula, the adjoint and the inverse of a Cauchy-Vandermonde matrix

AU - Mühlbach, G.

PY - 1996/2/20

Y1 - 1996/2/20

N2 - For a given Cauchy-Vandermonde system and for given multiple nodes a Lagrange-type formula for the interpolant is derived, interpolating a given function in the sense of Hermite. We give explicit analytic representations of the basic functions in terms of the nodes and prescribed poles. They are used to derive formulas for the entries of the adjoint of the confluent Cauchy-Vandermonde matrix corresponding to the interpolation problem thus providing an explicit representation of its inverse.

AB - For a given Cauchy-Vandermonde system and for given multiple nodes a Lagrange-type formula for the interpolant is derived, interpolating a given function in the sense of Hermite. We give explicit analytic representations of the basic functions in terms of the nodes and prescribed poles. They are used to derive formulas for the entries of the adjoint of the confluent Cauchy-Vandermonde matrix corresponding to the interpolation problem thus providing an explicit representation of its inverse.

KW - Cauchy-Vandermonde systems

KW - Hermite interpolation

KW - Inverse of a Cauchy-Vandermonde matrix

UR - http://www.scopus.com/inward/record.url?scp=0030079806&partnerID=8YFLogxK

U2 - 10.1016/0377-0427(94)00116-2

DO - 10.1016/0377-0427(94)00116-2

M3 - Article

AN - SCOPUS:0030079806

VL - 67

SP - 147

EP - 159

JO - Journal of Computational and Applied Mathematics

JF - Journal of Computational and Applied Mathematics

SN - 0377-0427

IS - 1

ER -