Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 361-365 |
Seitenumfang | 5 |
Fachzeitschrift | Archiv der Mathematik |
Jahrgang | 114 |
Ausgabenummer | 4 |
Frühes Online-Datum | 15 Nov. 2019 |
Publikationsstatus | Veröffentlicht - Apr. 2020 |
Abstract
For an arbitrary prime p, we prove that the proportion of entries divisible by p in certain columns of the character table of the symmetric group S n tends to 1 as n→ ∞. This is done by finding lower bounds on the number of k-cores for k large enough with respect to n.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Archiv der Mathematik, Jahrgang 114, Nr. 4, 04.2020, S. 361-365.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - On divisibility by primes in columns of character tables of symmetric groups
AU - Morotti, Lucia
N1 - Funding Information: The author thanks Alexander Miller for bringing this problem to her attention and for some discussion. The author was supported by the DFG Grant MO 3377/1-1. Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
PY - 2020/4
Y1 - 2020/4
N2 - For an arbitrary prime p, we prove that the proportion of entries divisible by p in certain columns of the character table of the symmetric group S n tends to 1 as n→ ∞. This is done by finding lower bounds on the number of k-cores for k large enough with respect to n.
AB - For an arbitrary prime p, we prove that the proportion of entries divisible by p in certain columns of the character table of the symmetric group S n tends to 1 as n→ ∞. This is done by finding lower bounds on the number of k-cores for k large enough with respect to n.
KW - Character values
KW - Core partitions
KW - Symmetric group
UR - http://www.scopus.com/inward/record.url?scp=85075237950&partnerID=8YFLogxK
U2 - 10.1007/s00013-019-01407-5
DO - 10.1007/s00013-019-01407-5
M3 - Article
VL - 114
SP - 361
EP - 365
JO - Archiv der Mathematik
JF - Archiv der Mathematik
SN - 0003-889X
IS - 4
ER -