Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 1750004 |
Fachzeitschrift | Journal of Micromechanics and Molecular Physics |
Jahrgang | 2 |
Ausgabenummer | 1 |
Frühes Online-Datum | 22 Feb. 2017 |
Publikationsstatus | Veröffentlicht - März 2017 |
Abstract
A numerical aspect of the implementation cohesive zone model for delamination analysis is presented in this work by employing interface elements and higher-order B-spline functions. The stress oscillation is addressed, and Newton–Cotes integration scheme is considered as a good candidate to overcome this phenomenon. In order to track the nonlinear equilibrium path, a general arc-length constraint named dissipationbased arc-length method is applied. A numerical example is presented to perform the ability of the formulation in predicting the delamination behavior of studied structures.
ASJC Scopus Sachgebiete
- Werkstoffwissenschaften (insg.)
- Keramische und Verbundwerkstoffe
- Werkstoffwissenschaften (insg.)
- Polymere und Kunststoffe
- Physik und Astronomie (insg.)
- Atom- und Molekularphysik sowie Optik
- Ingenieurwesen (insg.)
- Werkstoffmechanik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of Micromechanics and Molecular Physics, Jahrgang 2, Nr. 1, 1750004, 03.2017.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Numerical study for cohesive zone model in delamination analysis based on higher-order b-spline functions
AU - Thai, Tran Quoc
AU - Rabczuk, Timon
AU - Zhuang, Xiaoying
PY - 2017/3
Y1 - 2017/3
N2 - A numerical aspect of the implementation cohesive zone model for delamination analysis is presented in this work by employing interface elements and higher-order B-spline functions. The stress oscillation is addressed, and Newton–Cotes integration scheme is considered as a good candidate to overcome this phenomenon. In order to track the nonlinear equilibrium path, a general arc-length constraint named dissipationbased arc-length method is applied. A numerical example is presented to perform the ability of the formulation in predicting the delamination behavior of studied structures.
AB - A numerical aspect of the implementation cohesive zone model for delamination analysis is presented in this work by employing interface elements and higher-order B-spline functions. The stress oscillation is addressed, and Newton–Cotes integration scheme is considered as a good candidate to overcome this phenomenon. In order to track the nonlinear equilibrium path, a general arc-length constraint named dissipationbased arc-length method is applied. A numerical example is presented to perform the ability of the formulation in predicting the delamination behavior of studied structures.
KW - Cohesive zone model
KW - Delamination
KW - Higher-order functions
KW - IGA
UR - http://www.scopus.com/inward/record.url?scp=85062308013&partnerID=8YFLogxK
U2 - 10.1142/S2424913017500047
DO - 10.1142/S2424913017500047
M3 - Article
AN - SCOPUS:85062308013
VL - 2
JO - Journal of Micromechanics and Molecular Physics
JF - Journal of Micromechanics and Molecular Physics
SN - 2424-9130
IS - 1
M1 - 1750004
ER -