Details
Titel in Übersetzung | Morphologische Übergänge von Vesikeln unter räumlich oder zeitlich inhomogenen Bedingungen |
---|---|
Originalsprache | Englisch |
Qualifikation | Doctor rerum naturalium |
Gradverleihende Hochschule |
|
Betreut von |
|
Datum der Verleihung des Grades | 30 Nov. 2020 |
Publikationsstatus | Veröffentlicht - 2020 |
Extern publiziert | Ja |
Abstract
Das betrifft zum einen die Erklärung der beobachteten Formen in einem Experiment, bei dem im Inneren des Vesikels Proteine plaziert wurden, die sich wiederkehrend an die innere Vesikelmembran heften und wieder ablösen. Dabei Verändert sich die Form des Vesikels von einer symmetrischen erdnussähnlichen Form zu einer asymmetrischen Form mit einem sehr dünnen Hals. Mittels eines theoretischem Modells, dass dem Anheften der Proteine eine Änderung in ihrer bevorzugten Krümmung zuweist, werden Formen berechnet, die den beobachteten Formen gleichen und nur durch das Variieren der bevorzugten Krümmung kann derselbe Formübergang erzielt werden.
Außerdem wird die Biegeenergie von Vesikeln, die durch die äußere Umgebung in eine kegelförmige Form gezwungen werden, in Abhängigkeit des Öffnungswinkels des Kegels analytisch berechnet. Es wird weiterhin die freie Energie eines idealen Gases, das durch die Kräfte der Gravitation inhomogen verteilt ist, innerhalb solcher starren kegelförmigen Vesikeln analytisch berechnet. Ein weiteres System, das betrachtet wird, sind molekulare Motoren, die die Fähigkeit besitzen, sich entlang bestimmter Stränge, der Mikrotubuli, gerichtet fortzubewegen und wenn sie sich nicht an einem Mikrotubulus
befinden, bewegen sie sich aufgrund der üblichen ungerichteten Kräfte, der Diffusion. Wenn nur ein Mikrotubulus und nur eine Art von Motoren vorhanden ist, entsteht dadurch eine Anhäufung von Teilchen auf der Seite in die die Motoren sich bewegen, ein Konzentrationsgradient. Es wird analytisch berechnet, wie sich dieser Konzentrationsgradient
verschiebt, wenn sich der Öffnungswinkel des Kegels ändert und mit Ergebnissen aus Computersimulationen verglichen.
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
2020. 105 S.
Publikation: Qualifikations-/Studienabschlussarbeit › Dissertation
}
TY - BOOK
T1 - Morphological transitions of vesicles exposed to nonuniform spatio-temporal conditions
AU - Christ, Simon
PY - 2020
Y1 - 2020
N2 - Die Morphologie beschreibt die Struktur und Form von Organismen. Im Rahmen dieser Arbeit werden insbesondere die verschiedenen Formen von einfachen Lipidmembranen untersucht, die geschlossene Formen in Lösung bilden, die Vesikel. Der Fokus liegt dabei auf Begebenheiten, in denen die es inhomogene Zustände innerhalb oder außerhalb des Vesikels gibt.Das betrifft zum einen die Erklärung der beobachteten Formen in einem Experiment, bei dem im Inneren des Vesikels Proteine plaziert wurden, die sich wiederkehrend an die innere Vesikelmembran heften und wieder ablösen. Dabei Verändert sich die Form des Vesikels von einer symmetrischen erdnussähnlichen Form zu einer asymmetrischen Form mit einem sehr dünnen Hals. Mittels eines theoretischem Modells, dass dem Anheften der Proteine eine Änderung in ihrer bevorzugten Krümmung zuweist, werden Formen berechnet, die den beobachteten Formen gleichen und nur durch das Variieren der bevorzugten Krümmung kann derselbe Formübergang erzielt werden.Außerdem wird die Biegeenergie von Vesikeln, die durch die äußere Umgebung in eine kegelförmige Form gezwungen werden, in Abhängigkeit des Öffnungswinkels des Kegels analytisch berechnet. Es wird weiterhin die freie Energie eines idealen Gases, das durch die Kräfte der Gravitation inhomogen verteilt ist, innerhalb solcher starren kegelförmigen Vesikeln analytisch berechnet. Ein weiteres System, das betrachtet wird, sind molekulare Motoren, die die Fähigkeit besitzen, sich entlang bestimmter Stränge, der Mikrotubuli, gerichtet fortzubewegen und wenn sie sich nicht an einem Mikrotubulusbefinden, bewegen sie sich aufgrund der üblichen ungerichteten Kräfte, der Diffusion. Wenn nur ein Mikrotubulus und nur eine Art von Motoren vorhanden ist, entsteht dadurch eine Anhäufung von Teilchen auf der Seite in die die Motoren sich bewegen, ein Konzentrationsgradient. Es wird analytisch berechnet, wie sich dieser Konzentrationsgradientverschiebt, wenn sich der Öffnungswinkel des Kegels ändert und mit Ergebnissen aus Computersimulationen verglichen.
AB - Die Morphologie beschreibt die Struktur und Form von Organismen. Im Rahmen dieser Arbeit werden insbesondere die verschiedenen Formen von einfachen Lipidmembranen untersucht, die geschlossene Formen in Lösung bilden, die Vesikel. Der Fokus liegt dabei auf Begebenheiten, in denen die es inhomogene Zustände innerhalb oder außerhalb des Vesikels gibt.Das betrifft zum einen die Erklärung der beobachteten Formen in einem Experiment, bei dem im Inneren des Vesikels Proteine plaziert wurden, die sich wiederkehrend an die innere Vesikelmembran heften und wieder ablösen. Dabei Verändert sich die Form des Vesikels von einer symmetrischen erdnussähnlichen Form zu einer asymmetrischen Form mit einem sehr dünnen Hals. Mittels eines theoretischem Modells, dass dem Anheften der Proteine eine Änderung in ihrer bevorzugten Krümmung zuweist, werden Formen berechnet, die den beobachteten Formen gleichen und nur durch das Variieren der bevorzugten Krümmung kann derselbe Formübergang erzielt werden.Außerdem wird die Biegeenergie von Vesikeln, die durch die äußere Umgebung in eine kegelförmige Form gezwungen werden, in Abhängigkeit des Öffnungswinkels des Kegels analytisch berechnet. Es wird weiterhin die freie Energie eines idealen Gases, das durch die Kräfte der Gravitation inhomogen verteilt ist, innerhalb solcher starren kegelförmigen Vesikeln analytisch berechnet. Ein weiteres System, das betrachtet wird, sind molekulare Motoren, die die Fähigkeit besitzen, sich entlang bestimmter Stränge, der Mikrotubuli, gerichtet fortzubewegen und wenn sie sich nicht an einem Mikrotubulusbefinden, bewegen sie sich aufgrund der üblichen ungerichteten Kräfte, der Diffusion. Wenn nur ein Mikrotubulus und nur eine Art von Motoren vorhanden ist, entsteht dadurch eine Anhäufung von Teilchen auf der Seite in die die Motoren sich bewegen, ein Konzentrationsgradient. Es wird analytisch berechnet, wie sich dieser Konzentrationsgradientverschiebt, wenn sich der Öffnungswinkel des Kegels ändert und mit Ergebnissen aus Computersimulationen verglichen.
U2 - https://doi.org/10.25932/publishup-48078
DO - https://doi.org/10.25932/publishup-48078
M3 - Doctoral thesis
ER -