Laser interferometry for LISA and satellite geodesy missions

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Autoren

  • Katharina-Sophie Isleif

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
QualifikationDoctor rerum naturalium
Gradverleihende Hochschule
Betreut von
  • Karsten Danzmann, Betreuer*in
Datum der Verleihung des Grades16 Mai 2018
ErscheinungsortHannover
PublikationsstatusVeröffentlicht - 2018

Abstract

Die Entwicklung von Laserinterferometern für präzise Längenänderungsmessungen im 1mHz-Frequenzbereich ist das Kernthema dieser Arbeit. Diese finden Anwendung in der Detektion von Gravitationswellen und der Messung des Erdschwerefeldes aus dem Weltraum. Verschiedene Interferometerkonzepte wurden für die Laser Interferometer Space Antenna (LISA)- und zukünftige geodätische Missionen innerhalb der hier dargestellten Arbeit am Albert-Einstein-Institut (AEI) in Hannover zwischen 2014 und 2018 untersucht. Der erste Teil dieser Arbeit befasst sich mit einer Designstudie über unterschiedliche Phasenreferenzverteilungssysteme (PRDSs) für LISA. Das derzeitige Design sieht das sogenannte Telescope Pointing als Basis-Mechanismus vor, wodurch eine Backlink-Verbindung zwischen zwei rotierenden optischen Bänken innerhalb eines Satelliten benötigt wird. Die Laser werden hiermit zwischen den beiden Interferometern ausgetauscht. Eine konkrete Realisierung dieses Backlinks ist eine der letzten offenen Fragen für das optische Design von LISA. Das sogenannte Drei-Backlink Interferometer (TBI) wurde speziell entworfen und dient als Testumgebung, in welcher drei Backlinks in einem einzelnen Aufbau miteinander verglichen werden. Optische Simulationen und eine Vorhersage möglicher Rauschquellen werden in dieser Arbeit präsentiert. Eine Freistrahl-Verbindung zwischen zwei rotierenden Bänken wurde bereits untersucht und es konnte gezeigt werden, dass die experimentelle Infrastruktur voll funktionsfähig ist. Das Design des Drei-Backlink Experiments ist abgeschlossen und es wird derzeit konstruiert. Der zweite Teil dieser Arbeit beschreibt alternative Interferometertechniken um die Komplexität optischer Aufbauten zu reduzieren. Moderne digitale Verarbeitungssysteme werden benutzt, um die gewünschte Phaseninformation zurückzugewinnen. Eine Vereinfachung der Optik ermöglicht den Betrieb mehrerer Kanäle gleichzeitig und die Auslesung vieler Freiheitsgrade. Diese Techniken werden in zukünftigen Satelliten-Gradiometern benötigt, um die Bewegung mehrerer Testmassen zu bestimmen. Dies wurde in einem optischen Aufbau mit nur einer einzelnen optischen Komponente simuliert. Mit tiefen Laserfrequenzmodulationen (DFMI), einer im Rahmen dieser Arbeit entwickelten Methode, konnte eine Messgenauigkeit von unter 1.0 pm/√Hz bei 100mHz erreicht werden.

Zitieren

Laser interferometry for LISA and satellite geodesy missions. / Isleif, Katharina-Sophie.
Hannover, 2018. 241 S.

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Isleif, K-S 2018, 'Laser interferometry for LISA and satellite geodesy missions', Doctor rerum naturalium, Gottfried Wilhelm Leibniz Universität Hannover, Hannover. https://doi.org/10.15488/3526
Isleif, K.-S. (2018). Laser interferometry for LISA and satellite geodesy missions. [Dissertation, Gottfried Wilhelm Leibniz Universität Hannover]. https://doi.org/10.15488/3526
Isleif KS. Laser interferometry for LISA and satellite geodesy missions. Hannover, 2018. 241 S. doi: 10.15488/3526
Isleif, Katharina-Sophie. / Laser interferometry for LISA and satellite geodesy missions. Hannover, 2018. 241 S.
Download
@phdthesis{edf9986c8fe24a4ca9293abdffdc61ef,
title = "Laser interferometry for LISA and satellite geodesy missions",
abstract = "The development and investigation of laser interferometry concepts for performing precise length measurements at frequencies below 1Hz is the main topic of this thesis. These concepts are quintessential for space-based measurements of gravitational waves or the Earth gravity field. For the Laser Interferometer Space Antenna (LISA) and future satellite geodesy missions, various interferometer types have been studied between 2014 and 2018 at the Albert Einstein Institute (AEI) in Hannover as a part of the work presented here. The first part of this thesis presents conceptual design studies of phase reference distribution systems (PRDSs) for LISA. The usage of Telescope Pointing is the baseline mechanism for the current LISA design and implies the need for a light-exchanging backlink connection between two rotating optical benches within one satellite. Different backlink implementations are presented and analyzed, the final choice however remains one of the last open questions for the LISA optical metrology. A test-bed for comparing three backlinks with each other in a single, so-called Three-Backlink interferometer (TBI) experiment, has been simulated and a detailed noise estimation, including a critical stray light analysis, is presented. A free-beam connection between two moving set-ups was established by which the full functionality of the experimental environment was validated. The design of the TBI has been completed and the experiment, consisting of two rotating quasi-monolithic optical benches, is currently under construction. The full experiment will enable to test the performance of LISA backlink candidates with a precision of 1 pm/√Hz in a relevant environment. The second part of this thesis describes alternative interferometer techniques for reducing the complexity of optical set-ups, while modern digital signal processing is applied for recovering the desired phase information. The simplifications in the optical part enables multi-channel operation and multi-degree of freedom readout, which is required for future gradiometers in satellites consisting of six or more test masses. An experiment simulating such a test mass readout with only a single optical component has been established. Interferometric readout noise levels of 1.0pm/√Hz at 100mHz were achieved by using deep frequency modulation interferometry (DFMI), a novel technique developed as part of this thesis.",
author = "Katharina-Sophie Isleif",
note = "Doctoral thesis",
year = "2018",
doi = "10.15488/3526",
language = "English",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - Laser interferometry for LISA and satellite geodesy missions

AU - Isleif, Katharina-Sophie

N1 - Doctoral thesis

PY - 2018

Y1 - 2018

N2 - The development and investigation of laser interferometry concepts for performing precise length measurements at frequencies below 1Hz is the main topic of this thesis. These concepts are quintessential for space-based measurements of gravitational waves or the Earth gravity field. For the Laser Interferometer Space Antenna (LISA) and future satellite geodesy missions, various interferometer types have been studied between 2014 and 2018 at the Albert Einstein Institute (AEI) in Hannover as a part of the work presented here. The first part of this thesis presents conceptual design studies of phase reference distribution systems (PRDSs) for LISA. The usage of Telescope Pointing is the baseline mechanism for the current LISA design and implies the need for a light-exchanging backlink connection between two rotating optical benches within one satellite. Different backlink implementations are presented and analyzed, the final choice however remains one of the last open questions for the LISA optical metrology. A test-bed for comparing three backlinks with each other in a single, so-called Three-Backlink interferometer (TBI) experiment, has been simulated and a detailed noise estimation, including a critical stray light analysis, is presented. A free-beam connection between two moving set-ups was established by which the full functionality of the experimental environment was validated. The design of the TBI has been completed and the experiment, consisting of two rotating quasi-monolithic optical benches, is currently under construction. The full experiment will enable to test the performance of LISA backlink candidates with a precision of 1 pm/√Hz in a relevant environment. The second part of this thesis describes alternative interferometer techniques for reducing the complexity of optical set-ups, while modern digital signal processing is applied for recovering the desired phase information. The simplifications in the optical part enables multi-channel operation and multi-degree of freedom readout, which is required for future gradiometers in satellites consisting of six or more test masses. An experiment simulating such a test mass readout with only a single optical component has been established. Interferometric readout noise levels of 1.0pm/√Hz at 100mHz were achieved by using deep frequency modulation interferometry (DFMI), a novel technique developed as part of this thesis.

AB - The development and investigation of laser interferometry concepts for performing precise length measurements at frequencies below 1Hz is the main topic of this thesis. These concepts are quintessential for space-based measurements of gravitational waves or the Earth gravity field. For the Laser Interferometer Space Antenna (LISA) and future satellite geodesy missions, various interferometer types have been studied between 2014 and 2018 at the Albert Einstein Institute (AEI) in Hannover as a part of the work presented here. The first part of this thesis presents conceptual design studies of phase reference distribution systems (PRDSs) for LISA. The usage of Telescope Pointing is the baseline mechanism for the current LISA design and implies the need for a light-exchanging backlink connection between two rotating optical benches within one satellite. Different backlink implementations are presented and analyzed, the final choice however remains one of the last open questions for the LISA optical metrology. A test-bed for comparing three backlinks with each other in a single, so-called Three-Backlink interferometer (TBI) experiment, has been simulated and a detailed noise estimation, including a critical stray light analysis, is presented. A free-beam connection between two moving set-ups was established by which the full functionality of the experimental environment was validated. The design of the TBI has been completed and the experiment, consisting of two rotating quasi-monolithic optical benches, is currently under construction. The full experiment will enable to test the performance of LISA backlink candidates with a precision of 1 pm/√Hz in a relevant environment. The second part of this thesis describes alternative interferometer techniques for reducing the complexity of optical set-ups, while modern digital signal processing is applied for recovering the desired phase information. The simplifications in the optical part enables multi-channel operation and multi-degree of freedom readout, which is required for future gradiometers in satellites consisting of six or more test masses. An experiment simulating such a test mass readout with only a single optical component has been established. Interferometric readout noise levels of 1.0pm/√Hz at 100mHz were achieved by using deep frequency modulation interferometry (DFMI), a novel technique developed as part of this thesis.

U2 - 10.15488/3526

DO - 10.15488/3526

M3 - Doctoral thesis

CY - Hannover

ER -