Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 677-723 |
Seitenumfang | 47 |
Fachzeitschrift | Mathematische Zeitschrift |
Jahrgang | 293 |
Ausgabenummer | 1-2 |
Frühes Online-Datum | 4 Dez. 2018 |
Publikationsstatus | Veröffentlicht - Okt. 2019 |
Abstract
We study irreducible restrictions of modules over symmetric groups to subgroups. We get reduction results which substantially restrict the classes of subgroups and modules for which this is possible. Such results are known when the characteristic of the ground field is greater than 3, but the small characteristics cases require a substantially more delicate analysis and new ideas. This work fits into the Aschbacher–Scott program on maximal subgroups of finite classical groups.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Mathematische Zeitschrift, Jahrgang 293, Nr. 1-2, 10.2019, S. 677-723.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Irreducible restrictions of representations of symmetric groups in small characteristics: reduction theorems
AU - Kleshchev, Alexander
AU - Morotti, Lucia
AU - Tiep, Pham Huu
PY - 2019/10
Y1 - 2019/10
N2 - We study irreducible restrictions of modules over symmetric groups to subgroups. We get reduction results which substantially restrict the classes of subgroups and modules for which this is possible. Such results are known when the characteristic of the ground field is greater than 3, but the small characteristics cases require a substantially more delicate analysis and new ideas. This work fits into the Aschbacher–Scott program on maximal subgroups of finite classical groups.
AB - We study irreducible restrictions of modules over symmetric groups to subgroups. We get reduction results which substantially restrict the classes of subgroups and modules for which this is possible. Such results are known when the characteristic of the ground field is greater than 3, but the small characteristics cases require a substantially more delicate analysis and new ideas. This work fits into the Aschbacher–Scott program on maximal subgroups of finite classical groups.
UR - http://www.scopus.com/inward/record.url?scp=85057979499&partnerID=8YFLogxK
U2 - 10.1007/s00209-018-2203-1
DO - 10.1007/s00209-018-2203-1
M3 - Article
VL - 293
SP - 677
EP - 723
JO - Mathematische Zeitschrift
JF - Mathematische Zeitschrift
SN - 0025-5874
IS - 1-2
ER -