Details
Originalsprache | Englisch |
---|---|
Fachzeitschrift | Journal of Applied Biomaterials and Functional Materials |
Jahrgang | 20 |
Frühes Online-Datum | 22 Dez. 2022 |
Publikationsstatus | Veröffentlicht - 2022 |
Abstract
The magnesium alloy LAE442 showed promising results as a bone substitute in numerous studies in non-weight bearing bone defects. This study aimed to investigate the in vivo behavior of wedge-shaped open-pored LAE442 scaffolds modified with two different coatings (magnesium fluoride (MgF2, group 1)) or magnesium fluoride/calcium phosphate (MgF2/CaP, group 2)) in a partial weight-bearing rabbit tibia defect model. The implantation of the scaffolds was performed as an open wedge corrective osteotomy in the tibia of 40 rabbits and followed for observation periods of 6, 12, 24, and 36 weeks. Radiological and microcomputed tomographic examinations were performed in vivo. X-ray microscopic, histological, histomorphometric, and SEM/EDS analyses were performed at the end of each time period. µCT measurements and X-ray microscopy showed a slight decrease in volume and density of the scaffolds of both coatings. Histologically, endosteal and periosteal callus formation with good bridging and stabilization of the osteotomy gap and ingrowth of bone into the scaffold was seen. The MgF2 coating favored better bridging of the osteotomy gap and more bone-scaffold contacts, especially at later examination time points. Overall, the scaffolds of both coatings met the requirement to withstand the loads after an open wedge corrective osteotomy of the proximal rabbit tibia. However, in addition to the inhomogeneous degradation behavior of individual scaffolds, an accumulation of gas appeared, so the scaffold material should be revised again regarding size dimension and composition.
ASJC Scopus Sachgebiete
- Biochemie, Genetik und Molekularbiologie (insg.)
- Biophysik
- Chemische Verfahrenstechnik (insg.)
- Bioengineering
- Werkstoffwissenschaften (insg.)
- Biomaterialien
- Ingenieurwesen (insg.)
- Biomedizintechnik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of Applied Biomaterials and Functional Materials, Jahrgang 20, 2022.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - In vivo investigation of open-pored magnesium scaffolds LAE442 with different coatings in an open wedge defect
AU - Schmidt, Marlene
AU - Waselau, Anja Christina
AU - Feichtner, Franziska
AU - Julmi, Stefan
AU - Klose, Christian
AU - Maier, Hans Jürgen
AU - Wriggers, Peter
AU - Meyer-Lindenberg, Andrea
N1 - Funding Information: The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This project was financially supported by the German Research Foundation (DFG) within the project “Interfacial effects and ingrowth behavior of magnesium sponges as a bioresorbable bone graft substitute” (Grant No. 271761343).
PY - 2022
Y1 - 2022
N2 - The magnesium alloy LAE442 showed promising results as a bone substitute in numerous studies in non-weight bearing bone defects. This study aimed to investigate the in vivo behavior of wedge-shaped open-pored LAE442 scaffolds modified with two different coatings (magnesium fluoride (MgF2, group 1)) or magnesium fluoride/calcium phosphate (MgF2/CaP, group 2)) in a partial weight-bearing rabbit tibia defect model. The implantation of the scaffolds was performed as an open wedge corrective osteotomy in the tibia of 40 rabbits and followed for observation periods of 6, 12, 24, and 36 weeks. Radiological and microcomputed tomographic examinations were performed in vivo. X-ray microscopic, histological, histomorphometric, and SEM/EDS analyses were performed at the end of each time period. µCT measurements and X-ray microscopy showed a slight decrease in volume and density of the scaffolds of both coatings. Histologically, endosteal and periosteal callus formation with good bridging and stabilization of the osteotomy gap and ingrowth of bone into the scaffold was seen. The MgF2 coating favored better bridging of the osteotomy gap and more bone-scaffold contacts, especially at later examination time points. Overall, the scaffolds of both coatings met the requirement to withstand the loads after an open wedge corrective osteotomy of the proximal rabbit tibia. However, in addition to the inhomogeneous degradation behavior of individual scaffolds, an accumulation of gas appeared, so the scaffold material should be revised again regarding size dimension and composition.
AB - The magnesium alloy LAE442 showed promising results as a bone substitute in numerous studies in non-weight bearing bone defects. This study aimed to investigate the in vivo behavior of wedge-shaped open-pored LAE442 scaffolds modified with two different coatings (magnesium fluoride (MgF2, group 1)) or magnesium fluoride/calcium phosphate (MgF2/CaP, group 2)) in a partial weight-bearing rabbit tibia defect model. The implantation of the scaffolds was performed as an open wedge corrective osteotomy in the tibia of 40 rabbits and followed for observation periods of 6, 12, 24, and 36 weeks. Radiological and microcomputed tomographic examinations were performed in vivo. X-ray microscopic, histological, histomorphometric, and SEM/EDS analyses were performed at the end of each time period. µCT measurements and X-ray microscopy showed a slight decrease in volume and density of the scaffolds of both coatings. Histologically, endosteal and periosteal callus formation with good bridging and stabilization of the osteotomy gap and ingrowth of bone into the scaffold was seen. The MgF2 coating favored better bridging of the osteotomy gap and more bone-scaffold contacts, especially at later examination time points. Overall, the scaffolds of both coatings met the requirement to withstand the loads after an open wedge corrective osteotomy of the proximal rabbit tibia. However, in addition to the inhomogeneous degradation behavior of individual scaffolds, an accumulation of gas appeared, so the scaffold material should be revised again regarding size dimension and composition.
KW - biodegradation
KW - coating
KW - Magnesium alloy
KW - osseointegration
KW - porous scaffold
UR - http://www.scopus.com/inward/record.url?scp=85144596215&partnerID=8YFLogxK
U2 - 10.1177/22808000221142679
DO - 10.1177/22808000221142679
M3 - Article
C2 - 36545893
AN - SCOPUS:85144596215
VL - 20
JO - Journal of Applied Biomaterials and Functional Materials
JF - Journal of Applied Biomaterials and Functional Materials
SN - 2280-8000
ER -