Identification and appropriate parametrization of parallel robot dynamic models by using estimation statistical properties

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Autoren

  • H. Abdellatif
  • Bodo Heimann
  • Oliver Hornung
  • Martin Grotjahn

Organisationseinheiten

Externe Organisationen

  • IAV GmbH
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Titel des Sammelwerks2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS
Seiten444-449
Seitenumfang6
PublikationsstatusVeröffentlicht - 2005
VeranstaltungIEEE IRS/RSJ International Conference on Intelligent Robots and Systems, IROS 2005 - Edmonton, AB, Kanada
Dauer: 2 Aug. 20056 Aug. 2005

Abstract

This paper presents a complete approach for parametrization of model- and knowledge-based controller for parallel robots. By combining and merging methodologies from mechanics, system theory, information processing and intelligent control, an accurate and compact method resulted and is substantiated with experimental results achieved on an innovative hexapod PaLiDA. An appropriate form of excitation trajectories helps to overcome classical identification problems, like disturbances in the acceleration signals. The Gauss-Markov estimator is applied for solving the over determined linear equation system. A novel method is presented that uses statistical and uncertainty attributes of the estimate for choosing an optimal structure and parameter number of the dynamics model.

ASJC Scopus Sachgebiete

Zitieren

Identification and appropriate parametrization of parallel robot dynamic models by using estimation statistical properties. / Abdellatif, H.; Heimann, Bodo; Hornung, Oliver et al.
2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS. 2005. S. 444-449 1545021.

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Abdellatif, H, Heimann, B, Hornung, O & Grotjahn, M 2005, Identification and appropriate parametrization of parallel robot dynamic models by using estimation statistical properties. in 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS., 1545021, S. 444-449, IEEE IRS/RSJ International Conference on Intelligent Robots and Systems, IROS 2005, Edmonton, AB, Kanada, 2 Aug. 2005. https://doi.org/10.1109/IROS.2005.1545021
Abdellatif, H., Heimann, B., Hornung, O., & Grotjahn, M. (2005). Identification and appropriate parametrization of parallel robot dynamic models by using estimation statistical properties. In 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS (S. 444-449). Artikel 1545021 https://doi.org/10.1109/IROS.2005.1545021
Abdellatif H, Heimann B, Hornung O, Grotjahn M. Identification and appropriate parametrization of parallel robot dynamic models by using estimation statistical properties. in 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS. 2005. S. 444-449. 1545021 doi: 10.1109/IROS.2005.1545021
Abdellatif, H. ; Heimann, Bodo ; Hornung, Oliver et al. / Identification and appropriate parametrization of parallel robot dynamic models by using estimation statistical properties. 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS. 2005. S. 444-449
Download
@inproceedings{8d748fdf6e0e4f6ea8f99dcb9512ee47,
title = "Identification and appropriate parametrization of parallel robot dynamic models by using estimation statistical properties",
abstract = "This paper presents a complete approach for parametrization of model- and knowledge-based controller for parallel robots. By combining and merging methodologies from mechanics, system theory, information processing and intelligent control, an accurate and compact method resulted and is substantiated with experimental results achieved on an innovative hexapod PaLiDA. An appropriate form of excitation trajectories helps to overcome classical identification problems, like disturbances in the acceleration signals. The Gauss-Markov estimator is applied for solving the over determined linear equation system. A novel method is presented that uses statistical and uncertainty attributes of the estimate for choosing an optimal structure and parameter number of the dynamics model.",
keywords = "Dynamics, Identification, Intelligent control, Parallel manipulators",
author = "H. Abdellatif and Bodo Heimann and Oliver Hornung and Martin Grotjahn",
year = "2005",
doi = "10.1109/IROS.2005.1545021",
language = "English",
isbn = "0780389123",
pages = "444--449",
booktitle = "2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS",
note = "IEEE IRS/RSJ International Conference on Intelligent Robots and Systems, IROS 2005 ; Conference date: 02-08-2005 Through 06-08-2005",

}

Download

TY - GEN

T1 - Identification and appropriate parametrization of parallel robot dynamic models by using estimation statistical properties

AU - Abdellatif, H.

AU - Heimann, Bodo

AU - Hornung, Oliver

AU - Grotjahn, Martin

PY - 2005

Y1 - 2005

N2 - This paper presents a complete approach for parametrization of model- and knowledge-based controller for parallel robots. By combining and merging methodologies from mechanics, system theory, information processing and intelligent control, an accurate and compact method resulted and is substantiated with experimental results achieved on an innovative hexapod PaLiDA. An appropriate form of excitation trajectories helps to overcome classical identification problems, like disturbances in the acceleration signals. The Gauss-Markov estimator is applied for solving the over determined linear equation system. A novel method is presented that uses statistical and uncertainty attributes of the estimate for choosing an optimal structure and parameter number of the dynamics model.

AB - This paper presents a complete approach for parametrization of model- and knowledge-based controller for parallel robots. By combining and merging methodologies from mechanics, system theory, information processing and intelligent control, an accurate and compact method resulted and is substantiated with experimental results achieved on an innovative hexapod PaLiDA. An appropriate form of excitation trajectories helps to overcome classical identification problems, like disturbances in the acceleration signals. The Gauss-Markov estimator is applied for solving the over determined linear equation system. A novel method is presented that uses statistical and uncertainty attributes of the estimate for choosing an optimal structure and parameter number of the dynamics model.

KW - Dynamics

KW - Identification

KW - Intelligent control

KW - Parallel manipulators

UR - http://www.scopus.com/inward/record.url?scp=43049182592&partnerID=8YFLogxK

U2 - 10.1109/IROS.2005.1545021

DO - 10.1109/IROS.2005.1545021

M3 - Conference contribution

AN - SCOPUS:43049182592

SN - 0780389123

SN - 9780780389120

SP - 444

EP - 449

BT - 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS

T2 - IEEE IRS/RSJ International Conference on Intelligent Robots and Systems, IROS 2005

Y2 - 2 August 2005 through 6 August 2005

ER -