Details
Originalsprache | Englisch |
---|---|
Titel des Sammelwerks | Proceedings of the european conference on AI (ECAI) |
Herausgeber/-innen | Ulle Endriss, Francisco S. Melo, Kerstin Bach, Alberto Bugarin-Diz, Jose M. Alonso-Moral, Senen Barro, Fredrik Heintz |
Seiten | 1100-1107 |
Seitenumfang | 8 |
ISBN (elektronisch) | 9781643685489 |
Publikationsstatus | Veröffentlicht - 2024 |
Publikationsreihe
Name | Frontiers in Artificial Intelligence and Applications |
---|---|
Band | 392 |
ISSN (Print) | 0922-6389 |
ISSN (elektronisch) | 1879-8314 |
Abstract
ASJC Scopus Sachgebiete
- Informatik (insg.)
- Artificial intelligence
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
Proceedings of the european conference on AI (ECAI). Hrsg. / Ulle Endriss; Francisco S. Melo; Kerstin Bach; Alberto Bugarin-Diz; Jose M. Alonso-Moral; Senen Barro; Fredrik Heintz. 2024. S. 1100-1107 (Frontiers in Artificial Intelligence and Applications; Band 392).
Publikation: Beitrag in Buch/Bericht/Sammelwerk/Konferenzband › Aufsatz in Konferenzband › Forschung › Peer-Review
}
TY - GEN
T1 - Hyperparameter Importance Analysis for Multi-Objective AutoML
AU - Theodorakopoulos, Daphne
AU - Stahl, Frederic
AU - Lindauer, Marius
N1 - Publisher Copyright: © 2024 The Authors.
PY - 2024
Y1 - 2024
N2 - Hyperparameter optimization plays a pivotal role in enhancing the predictive performance and generalization capabilities of ML models. However, in many applications, we do not only care about predictive performance but also about objectives such as inference time, memory, or energy consumption. In such MOO scenarios, determining the importance of hyperparameters poses a significant challenge due to the complex interplay between the conflicting objectives. In this paper, we propose the first method for assessing the importance of hyperparameters in the context of multi-objective hyperparameter optimization. Our approach leverages surrogate-based hyperparameter importance (HPI) measures, i.e. fANOVA and ablation paths, to provide insights into the impact of hyperparameters on the optimization objectives. Specifically, we compute the a-priori scalarization of the objectives and determine the importance of the hyperparameters for different objective tradeoffs. Through extensive empirical evaluations on diverse benchmark datasets with three different objectives paired with accuracy, namely time, demographic parity, and energy consumption, we demonstrate the effectiveness and robustness of our proposed method. Our findings not only offer valuable guidance for hyperparameter tuning in MOO tasks but also contribute to advancing the understanding of HPI in complex optimization scenarios.
AB - Hyperparameter optimization plays a pivotal role in enhancing the predictive performance and generalization capabilities of ML models. However, in many applications, we do not only care about predictive performance but also about objectives such as inference time, memory, or energy consumption. In such MOO scenarios, determining the importance of hyperparameters poses a significant challenge due to the complex interplay between the conflicting objectives. In this paper, we propose the first method for assessing the importance of hyperparameters in the context of multi-objective hyperparameter optimization. Our approach leverages surrogate-based hyperparameter importance (HPI) measures, i.e. fANOVA and ablation paths, to provide insights into the impact of hyperparameters on the optimization objectives. Specifically, we compute the a-priori scalarization of the objectives and determine the importance of the hyperparameters for different objective tradeoffs. Through extensive empirical evaluations on diverse benchmark datasets with three different objectives paired with accuracy, namely time, demographic parity, and energy consumption, we demonstrate the effectiveness and robustness of our proposed method. Our findings not only offer valuable guidance for hyperparameter tuning in MOO tasks but also contribute to advancing the understanding of HPI in complex optimization scenarios.
KW - cs.LG
KW - cs.AI
UR - http://www.scopus.com/inward/record.url?scp=85213334181&partnerID=8YFLogxK
U2 - 10.3233/FAIA240602
DO - 10.3233/FAIA240602
M3 - Conference contribution
T3 - Frontiers in Artificial Intelligence and Applications
SP - 1100
EP - 1107
BT - Proceedings of the european conference on AI (ECAI)
A2 - Endriss, Ulle
A2 - Melo, Francisco S.
A2 - Bach, Kerstin
A2 - Bugarin-Diz, Alberto
A2 - Alonso-Moral, Jose M.
A2 - Barro, Senen
A2 - Heintz, Fredrik
ER -