Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 348-354 |
Seitenumfang | 7 |
Fachzeitschrift | METROLOGIA |
Jahrgang | 54 |
Ausgabenummer | 3 |
Publikationsstatus | Veröffentlicht - Juni 2017 |
Abstract
We report on the first comparison of distant caesium fountain primary frequency standards (PFSs) via an optical fiber link. The 1415 km long optical link connects two PFSs at LNESYRTE (Laboratoire National de métrologie et d'Essais-SYstème de Références Temps- Espace) in Paris (France) with two at PTB (Physikalisch-Technische Bundesanstalt) in Braunschweig (Germany). For a long time, these PFSs have been major contributors to accuracy of the International Atomic Time (TAI), with stated accuracies of around 3×10-16. They have also been the references for a number of absolute measurements of clock transition frequencies in various optical frequency standards in view of a future redefinition of the second. The phase coherent optical frequency transfer via a stabilized telecom fiber link enables far better resolution than any other means of frequency transfer based on satellite links. The agreement for each pair of distant fountains compared is well within the combined uncertainty of a few 10-16 for all the comparisons, which fully supports the stated PFSs' uncertainties. The comparison also includes a rubidium fountain frequency standard participating in the steering of TAI and enables a new absolute determination of the 87Rb ground state hyperfine transition frequency with an uncertainty of 3.1×10-16.
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Allgemeiner Maschinenbau
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: METROLOGIA, Jahrgang 54, Nr. 3, 06.2017, S. 348-354.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - First international comparison of fountain primary frequency standards via a long distance optical fiber link
AU - Guéna, J.
AU - Weyers, S.
AU - Abgrall, M.
AU - Grebing, C.
AU - Gerginov, V.
AU - Rosenbusch, P.
AU - Bize, S.
AU - Lipphardt, B.
AU - Denker, H.
AU - Quintin, N.
AU - Raupach, S. M.F.
AU - Nicolodi, D.
AU - Stefani, F.
AU - Chiodo, N.
AU - Koke, S.
AU - Kuhl, A.
AU - Wiotte, F.
AU - Meynadier, F.
AU - Camisard, E.
AU - Chardonnet, C.
AU - Le Coq, Y.
AU - Lours, M.
AU - Santarelli, G.
AU - Amy-Klein, A.
AU - Le Targat, R.
AU - Lopez, O.
AU - Pottie, P. E.
AU - Grosche, G.
N1 - Publisher Copyright: © 2017 BIPM & IOP Publishing Ltd. Copyright: Copyright 2017 Elsevier B.V., All rights reserved.
PY - 2017/6
Y1 - 2017/6
N2 - We report on the first comparison of distant caesium fountain primary frequency standards (PFSs) via an optical fiber link. The 1415 km long optical link connects two PFSs at LNESYRTE (Laboratoire National de métrologie et d'Essais-SYstème de Références Temps- Espace) in Paris (France) with two at PTB (Physikalisch-Technische Bundesanstalt) in Braunschweig (Germany). For a long time, these PFSs have been major contributors to accuracy of the International Atomic Time (TAI), with stated accuracies of around 3×10-16. They have also been the references for a number of absolute measurements of clock transition frequencies in various optical frequency standards in view of a future redefinition of the second. The phase coherent optical frequency transfer via a stabilized telecom fiber link enables far better resolution than any other means of frequency transfer based on satellite links. The agreement for each pair of distant fountains compared is well within the combined uncertainty of a few 10-16 for all the comparisons, which fully supports the stated PFSs' uncertainties. The comparison also includes a rubidium fountain frequency standard participating in the steering of TAI and enables a new absolute determination of the 87Rb ground state hyperfine transition frequency with an uncertainty of 3.1×10-16.
AB - We report on the first comparison of distant caesium fountain primary frequency standards (PFSs) via an optical fiber link. The 1415 km long optical link connects two PFSs at LNESYRTE (Laboratoire National de métrologie et d'Essais-SYstème de Références Temps- Espace) in Paris (France) with two at PTB (Physikalisch-Technische Bundesanstalt) in Braunschweig (Germany). For a long time, these PFSs have been major contributors to accuracy of the International Atomic Time (TAI), with stated accuracies of around 3×10-16. They have also been the references for a number of absolute measurements of clock transition frequencies in various optical frequency standards in view of a future redefinition of the second. The phase coherent optical frequency transfer via a stabilized telecom fiber link enables far better resolution than any other means of frequency transfer based on satellite links. The agreement for each pair of distant fountains compared is well within the combined uncertainty of a few 10-16 for all the comparisons, which fully supports the stated PFSs' uncertainties. The comparison also includes a rubidium fountain frequency standard participating in the steering of TAI and enables a new absolute determination of the 87Rb ground state hyperfine transition frequency with an uncertainty of 3.1×10-16.
KW - Atomic fountain clocks
KW - International fountain clock comparison
KW - Optical fiber frequency transfer
KW - international fountain clock comparison
KW - atomic fountain clocks
KW - optical fiber frequency transfer
UR - http://www.scopus.com/inward/record.url?scp=85020931992&partnerID=8YFLogxK
U2 - 10.1088/1681-7575/aa65fe
DO - 10.1088/1681-7575/aa65fe
M3 - Article
AN - SCOPUS:85020931992
VL - 54
SP - 348
EP - 354
JO - METROLOGIA
JF - METROLOGIA
SN - 0026-1394
IS - 3
ER -