Extension Groups of Tautological Bundles on Punctual Quot Schemes of Curves

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • Andreas Krug

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer103600
Seitenumfang30
FachzeitschriftJournal des Mathematiques Pures et Appliquees
Jahrgang189
Frühes Online-Datum25 Juli 2024
PublikationsstatusVeröffentlicht - Sept. 2024

Abstract

We prove formulas for the cohomology and the extension groups of tautological bundles on punctual Quot schemes over complex smooth projective curves. As a corollary, we show that the tautological bundle determines the isomorphism class of the original vector bundle on the curve. We also give a vanishing result for the push-forward along the Quot--Chow morphism of tensor and wedge products of duals of tautological bundles.

ASJC Scopus Sachgebiete

Zitieren

Extension Groups of Tautological Bundles on Punctual Quot Schemes of Curves. / Krug, Andreas.
in: Journal des Mathematiques Pures et Appliquees, Jahrgang 189, 103600, 09.2024.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Krug A. Extension Groups of Tautological Bundles on Punctual Quot Schemes of Curves. Journal des Mathematiques Pures et Appliquees. 2024 Sep;189:103600. Epub 2024 Jul 25. doi: 10.48550/arXiv.2305.17124, 10.1016/j.matpur.2024.103600
Download
@article{8fa0771063c84b48985ca20c8b7c0e9b,
title = "Extension Groups of Tautological Bundles on Punctual Quot Schemes of Curves",
abstract = " We prove formulas for the cohomology and the extension groups of tautological bundles on punctual Quot schemes over complex smooth projective curves. As a corollary, we show that the tautological bundle determines the isomorphism class of the original vector bundle on the curve. We also give a vanishing result for the push-forward along the Quot--Chow morphism of tensor and wedge products of duals of tautological bundles. ",
keywords = "math.AG, Fourier–Mukai transforms, Sheaf cohomology, Tautological bundles, Punctual Quot schemes",
author = "Andreas Krug",
note = "Publisher Copyright: {\textcopyright} 2024 The Author(s)",
year = "2024",
month = sep,
doi = "10.48550/arXiv.2305.17124",
language = "English",
volume = "189",
journal = "Journal des Mathematiques Pures et Appliquees",
issn = "0021-7824",
publisher = "Elsevier Masson SAS",

}

Download

TY - JOUR

T1 - Extension Groups of Tautological Bundles on Punctual Quot Schemes of Curves

AU - Krug, Andreas

N1 - Publisher Copyright: © 2024 The Author(s)

PY - 2024/9

Y1 - 2024/9

N2 - We prove formulas for the cohomology and the extension groups of tautological bundles on punctual Quot schemes over complex smooth projective curves. As a corollary, we show that the tautological bundle determines the isomorphism class of the original vector bundle on the curve. We also give a vanishing result for the push-forward along the Quot--Chow morphism of tensor and wedge products of duals of tautological bundles.

AB - We prove formulas for the cohomology and the extension groups of tautological bundles on punctual Quot schemes over complex smooth projective curves. As a corollary, we show that the tautological bundle determines the isomorphism class of the original vector bundle on the curve. We also give a vanishing result for the push-forward along the Quot--Chow morphism of tensor and wedge products of duals of tautological bundles.

KW - math.AG

KW - Fourier–Mukai transforms

KW - Sheaf cohomology

KW - Tautological bundles

KW - Punctual Quot schemes

UR - http://www.scopus.com/inward/record.url?scp=85200645387&partnerID=8YFLogxK

U2 - 10.48550/arXiv.2305.17124

DO - 10.48550/arXiv.2305.17124

M3 - Article

VL - 189

JO - Journal des Mathematiques Pures et Appliquees

JF - Journal des Mathematiques Pures et Appliquees

SN - 0021-7824

M1 - 103600

ER -