Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 36175-36189 |
Seitenumfang | 15 |
Fachzeitschrift | International Journal of Hydrogen Energy |
Jahrgang | 47 |
Ausgabenummer | 85 |
Frühes Online-Datum | 14 Okt. 2022 |
Publikationsstatus | Veröffentlicht - 15 Okt. 2022 |
Abstract
New results on the reactions of the (BH4)-anion enclathrated in the cages of sodalites are reported. Hydrothermally synthesized NaBH4-sodalites (ǀNa8(BH4)2ǀ[SiAlO4]6) always contain hydro-sodalite type cages (ǀNa3(H2O)4ǀ[SiAlO4]3). With increasing temperature dehydration occurs. Above 250 °C a limited reaction of the residual water is going on with (BH4)-cage fillings releasing hydrogen and the appearance of certain borate specifications enclosed in the sodalite cages. The effect of a reaction of oxygen with the (BH4)-anions in the sodalite-cages at temperatures above 400 °C is also shown. The degree of (BH4)-conversion using wet and dry N2 stream is further followed by IR and MAS NMR investigations. External supply of water largely enhances the degree of reaction, e.g. at 400 °C from 16% to 44% loss of (BH4)-absorption intensity. However, 11B MAS NMR shows 8% and 22% of a conversion of (BH4)-cage fillings into new borate species in dry and wet N2 stream, respectively. These lower values are explained by a loss of B-ions via formation and evaporation of BH3 from the sodalite. Further evaluation of the 11B MAS NMR spectra could resolve the formation of (B(OH)3)-, (BO(OH)2)-, (B(OH)4)- along with unreacted (BH4)-species in the cages. 1H-MAS NMR shows a −3.8 ppm signal related to cage isolated (OH)-, which suggests an initial reaction step via (H+ + BH4−) to (BH3 + H2). The formation of (B(OH)3), however, also indicated sufficient water for a reaction of BH3 releasing further hydrogen. The formation of (BH3) could be observed in temperature dependent IR investigations at temperatures above 400 °C.
ASJC Scopus Sachgebiete
- Energie (insg.)
- Erneuerbare Energien, Nachhaltigkeit und Umwelt
- Energie (insg.)
- Feuerungstechnik
- Physik und Astronomie (insg.)
- Physik der kondensierten Materie
- Energie (insg.)
- Energieanlagenbau und Kraftwerkstechnik
Ziele für nachhaltige Entwicklung
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: International Journal of Hydrogen Energy, Jahrgang 47, Nr. 85, 15.10.2022, S. 36175-36189.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Experiments on the thermal activation of hydrogen release of NaBH4-sodalites characterized by IR- and MAS-NMR spectroscopy
AU - Rüscher, Claus Henning
AU - Schomborg, Lars
AU - Bredow, Thomas
N1 - Funding Information: The authors gratefully acknowledge helpful comments by the editor (JS) and an unknown referee. Experimental and theoretical investigations were financially supported in part by Deutsche Forschungsgemeischaft ( DFG) ( RU764/6-1 , BR1768/8-1 ). We thank Dr M. Fechtelkord for the NMR measurements at the “Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum”, Germany. Funding Information: The authors gratefully acknowledge helpful comments by the editor (JS) and an unknown referee. Experimental and theoretical investigations were financially supported in part by Deutsche Forschungsgemeischaft (DFG) (RU764/6-1, BR1768/8-1). We thank Dr M. Fechtelkord for the NMR measurements at the “Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum”, Germany.
PY - 2022/10/15
Y1 - 2022/10/15
N2 - New results on the reactions of the (BH4)-anion enclathrated in the cages of sodalites are reported. Hydrothermally synthesized NaBH4-sodalites (ǀNa8(BH4)2ǀ[SiAlO4]6) always contain hydro-sodalite type cages (ǀNa3(H2O)4ǀ[SiAlO4]3). With increasing temperature dehydration occurs. Above 250 °C a limited reaction of the residual water is going on with (BH4)-cage fillings releasing hydrogen and the appearance of certain borate specifications enclosed in the sodalite cages. The effect of a reaction of oxygen with the (BH4)-anions in the sodalite-cages at temperatures above 400 °C is also shown. The degree of (BH4)-conversion using wet and dry N2 stream is further followed by IR and MAS NMR investigations. External supply of water largely enhances the degree of reaction, e.g. at 400 °C from 16% to 44% loss of (BH4)-absorption intensity. However, 11B MAS NMR shows 8% and 22% of a conversion of (BH4)-cage fillings into new borate species in dry and wet N2 stream, respectively. These lower values are explained by a loss of B-ions via formation and evaporation of BH3 from the sodalite. Further evaluation of the 11B MAS NMR spectra could resolve the formation of (B(OH)3)-, (BO(OH)2)-, (B(OH)4)- along with unreacted (BH4)-species in the cages. 1H-MAS NMR shows a −3.8 ppm signal related to cage isolated (OH)-, which suggests an initial reaction step via (H+ + BH4−) to (BH3 + H2). The formation of (B(OH)3), however, also indicated sufficient water for a reaction of BH3 releasing further hydrogen. The formation of (BH3) could be observed in temperature dependent IR investigations at temperatures above 400 °C.
AB - New results on the reactions of the (BH4)-anion enclathrated in the cages of sodalites are reported. Hydrothermally synthesized NaBH4-sodalites (ǀNa8(BH4)2ǀ[SiAlO4]6) always contain hydro-sodalite type cages (ǀNa3(H2O)4ǀ[SiAlO4]3). With increasing temperature dehydration occurs. Above 250 °C a limited reaction of the residual water is going on with (BH4)-cage fillings releasing hydrogen and the appearance of certain borate specifications enclosed in the sodalite cages. The effect of a reaction of oxygen with the (BH4)-anions in the sodalite-cages at temperatures above 400 °C is also shown. The degree of (BH4)-conversion using wet and dry N2 stream is further followed by IR and MAS NMR investigations. External supply of water largely enhances the degree of reaction, e.g. at 400 °C from 16% to 44% loss of (BH4)-absorption intensity. However, 11B MAS NMR shows 8% and 22% of a conversion of (BH4)-cage fillings into new borate species in dry and wet N2 stream, respectively. These lower values are explained by a loss of B-ions via formation and evaporation of BH3 from the sodalite. Further evaluation of the 11B MAS NMR spectra could resolve the formation of (B(OH)3)-, (BO(OH)2)-, (B(OH)4)- along with unreacted (BH4)-species in the cages. 1H-MAS NMR shows a −3.8 ppm signal related to cage isolated (OH)-, which suggests an initial reaction step via (H+ + BH4−) to (BH3 + H2). The formation of (B(OH)3), however, also indicated sufficient water for a reaction of BH3 releasing further hydrogen. The formation of (BH3) could be observed in temperature dependent IR investigations at temperatures above 400 °C.
KW - Hydro-sodalite
KW - Inter cage reactions
KW - NaBH-Sodalite
UR - http://www.scopus.com/inward/record.url?scp=85128619217&partnerID=8YFLogxK
U2 - 10.1016/j.ijhydene.2022.05.302
DO - 10.1016/j.ijhydene.2022.05.302
M3 - Article
AN - SCOPUS:85128619217
VL - 47
SP - 36175
EP - 36189
JO - International Journal of Hydrogen Energy
JF - International Journal of Hydrogen Energy
SN - 0360-3199
IS - 85
ER -