Details
Originalsprache | Englisch |
---|---|
Titel des Sammelwerks | 10th International Conference on FRP Composites in Civil Engineering - Proceedings of CICE 2020/2021 |
Herausgeber/-innen | Alper Ilki, Medine Ispir, Pinar Inci |
Herausgeber (Verlag) | Springer Science and Business Media Deutschland GmbH |
Seiten | 2180-2187 |
Seitenumfang | 8 |
ISBN (Print) | 9783030881658 |
Publikationsstatus | Veröffentlicht - 27 Nov. 2021 |
Extern publiziert | Ja |
Veranstaltung | 10th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering, CICE 2021 - Virtual, Online Dauer: 8 Dez. 2021 → 10 Dez. 2021 |
Publikationsreihe
Name | Lecture Notes in Civil Engineering |
---|---|
Band | 198 LNCE |
ISSN (Print) | 2366-2557 |
ISSN (elektronisch) | 2366-2565 |
Abstract
Post-tensioned steel strands have been traditionally used in different prestressed structures such as concrete girders, post-tensioned concrete slabs, cable-stayed bridges, post-tensioned walls, etc. for a long time. However, due to the vulnerability of steel to the fatigue and corrosion, application of carbon fiber reinforced polymer (CFRP) rods, because of their higher strength-to-weight ratio, corrosion and fatigue resistance, is a good substitution for prestressed steel strands. Nevertheless, it is a major challenge to develop a purely mechanical anchorage for CFRP rods. In this study, a new mechanical anchorage for prestressed CFRP rods is introduced. The proposed anchor consists of a steel barrel with a conical hole and three separate aluminum wedges being in direct contact with the CFRP rod. The anchor system transfers the load through friction, without any adhesive required. The static and fatigue behavior of the anchor were experimentally investigated, following the Guideline for European Technical Approval of Post-Tensioning Systems (ETAG 013). The effect of various parameters such as friction between the wedges and the barrel and between the wedges and the CFRP rod and the level of the presetting force on the static and fatigue performance of the anchors were experimentally studied. In the static tests, the load carrying capacity of the post-tensioned system was much higher than the guaranteed strength of the CFRP rods. The fatigue tests indicate that no slippage occurs between different components of the anchor system during the cyclic loadings, and, no damage is accumulated in the system after 2 million cycles. In addition, it was observed that the high frequency of cyclic loadings does not affect the cyclic performance of the system; i.e. under high loading frequencies, no heat was generated in the anchor, since the components did not have any relative movements.
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Tief- und Ingenieurbau
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
10th International Conference on FRP Composites in Civil Engineering - Proceedings of CICE 2020/2021. Hrsg. / Alper Ilki; Medine Ispir; Pinar Inci. Springer Science and Business Media Deutschland GmbH, 2021. S. 2180-2187 (Lecture Notes in Civil Engineering; Band 198 LNCE).
Publikation: Beitrag in Buch/Bericht/Sammelwerk/Konferenzband › Aufsatz in Konferenzband › Forschung › Peer-Review
}
TY - GEN
T1 - Experimental Study on the Static and Fatigue Behaviour of a New Mechanical Wedge-Barrel Anchor
AU - Heydarinouri, Hossein
AU - Motavalli, Masoud
AU - Nussbaumer, Alain
AU - Ghafoori, Elyas
N1 - Publisher Copyright: © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
PY - 2021/11/27
Y1 - 2021/11/27
N2 - Post-tensioned steel strands have been traditionally used in different prestressed structures such as concrete girders, post-tensioned concrete slabs, cable-stayed bridges, post-tensioned walls, etc. for a long time. However, due to the vulnerability of steel to the fatigue and corrosion, application of carbon fiber reinforced polymer (CFRP) rods, because of their higher strength-to-weight ratio, corrosion and fatigue resistance, is a good substitution for prestressed steel strands. Nevertheless, it is a major challenge to develop a purely mechanical anchorage for CFRP rods. In this study, a new mechanical anchorage for prestressed CFRP rods is introduced. The proposed anchor consists of a steel barrel with a conical hole and three separate aluminum wedges being in direct contact with the CFRP rod. The anchor system transfers the load through friction, without any adhesive required. The static and fatigue behavior of the anchor were experimentally investigated, following the Guideline for European Technical Approval of Post-Tensioning Systems (ETAG 013). The effect of various parameters such as friction between the wedges and the barrel and between the wedges and the CFRP rod and the level of the presetting force on the static and fatigue performance of the anchors were experimentally studied. In the static tests, the load carrying capacity of the post-tensioned system was much higher than the guaranteed strength of the CFRP rods. The fatigue tests indicate that no slippage occurs between different components of the anchor system during the cyclic loadings, and, no damage is accumulated in the system after 2 million cycles. In addition, it was observed that the high frequency of cyclic loadings does not affect the cyclic performance of the system; i.e. under high loading frequencies, no heat was generated in the anchor, since the components did not have any relative movements.
AB - Post-tensioned steel strands have been traditionally used in different prestressed structures such as concrete girders, post-tensioned concrete slabs, cable-stayed bridges, post-tensioned walls, etc. for a long time. However, due to the vulnerability of steel to the fatigue and corrosion, application of carbon fiber reinforced polymer (CFRP) rods, because of their higher strength-to-weight ratio, corrosion and fatigue resistance, is a good substitution for prestressed steel strands. Nevertheless, it is a major challenge to develop a purely mechanical anchorage for CFRP rods. In this study, a new mechanical anchorage for prestressed CFRP rods is introduced. The proposed anchor consists of a steel barrel with a conical hole and three separate aluminum wedges being in direct contact with the CFRP rod. The anchor system transfers the load through friction, without any adhesive required. The static and fatigue behavior of the anchor were experimentally investigated, following the Guideline for European Technical Approval of Post-Tensioning Systems (ETAG 013). The effect of various parameters such as friction between the wedges and the barrel and between the wedges and the CFRP rod and the level of the presetting force on the static and fatigue performance of the anchors were experimentally studied. In the static tests, the load carrying capacity of the post-tensioned system was much higher than the guaranteed strength of the CFRP rods. The fatigue tests indicate that no slippage occurs between different components of the anchor system during the cyclic loadings, and, no damage is accumulated in the system after 2 million cycles. In addition, it was observed that the high frequency of cyclic loadings does not affect the cyclic performance of the system; i.e. under high loading frequencies, no heat was generated in the anchor, since the components did not have any relative movements.
KW - CFRP rod
KW - Fatigue
KW - Post-tensioning
KW - Wedge-barrel anchor
UR - http://www.scopus.com/inward/record.url?scp=85121926092&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-88166-5_188
DO - 10.1007/978-3-030-88166-5_188
M3 - Conference contribution
AN - SCOPUS:85121926092
SN - 9783030881658
T3 - Lecture Notes in Civil Engineering
SP - 2180
EP - 2187
BT - 10th International Conference on FRP Composites in Civil Engineering - Proceedings of CICE 2020/2021
A2 - Ilki, Alper
A2 - Ispir, Medine
A2 - Inci, Pinar
PB - Springer Science and Business Media Deutschland GmbH
T2 - 10th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering, CICE 2021
Y2 - 8 December 2021 through 10 December 2021
ER -