Loading [MathJax]/extensions/tex2jax.js

Estimation of soil organic carbon using hyperspectral remote sensing data and a large scale soil spectral library: from laboratory to space

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Autorschaft

  • Kathrin Jennifer Ward

Organisationseinheiten

Details

OriginalspracheEnglisch
QualifikationDoctor rerum naturalium
Gradverleihende Hochschule
Betreut von
  • Sabine Chabrillat, Betreuer*in
Datum der Verleihung des Grades24 Juni 2024
ErscheinungsortHannover
PublikationsstatusVeröffentlicht - 24 Juni 2024

Abstract

Unsere Böden sind der größte terrestrische Kohlenstoffspeicher der Erde. Aufgrund desfortschreitenden Klimawandels und zur Sicherstellung der Ernährung einer wachsendenWeltbevölkerung, steigt der Druck mehr Erkenntnisse über den Zustand des Bodens inklusive seines Kohlenstoffgehalts zu generieren. Die Kartierung des Bodenkohlenstoffs ist besonders für größere Gebiete eine Herausforderung, weil herkömmliche Methoden umfangreiche Probenahmen und teure Laboranalysen erfordern. Um die Bodengesundheit zu wahren und die Kapazitäten sinnvoll zu nutzen, ist es notwendig die Böden zu beobachten und somit eine zeitliche Komponente hinzuzufügen. Dafür werden geeignete Ansätze zur regelmäßigen und großräumigen Quantifizierung des Kohlenstoffgehalts benötigt. Die Bodenspektroskopie hat das Potenzial hierbei zu unterstützen. Im Labor und auf Luftbildebene hat sie sich bereits für die Ableitung einiger Bodeneigenschaften bewährt. Kürzlich verfügbar gewordene hyperspektrale Satellitendaten ermöglichen es quantitative Bodenkohlenstoffkarten zu erstellen. Diese EO (Earth observation) Sensoren können auch ein zukünftiges Werkzeug zur Beobachtung der Böden darstellen, um u.a. die Bodendegradation zu bekämpfen. In dieser Arbeit wurden Ansätze entwickelt, die auf verschiedenen räumlichen Skalen, die neuen EO Sensoren zur Kartierung des spektral aktiven organischen Bodenkohlenstoffs (SOC) evaluieren. Dafür sind Bodenreferenzdaten ein wichtiger Bestandteil zur Generierung und Validierung von Modellen, aber oft schwer verfügbar. Eine Möglichkeit ist die zusätzliche Verwendung von existierenden großräumigen Bodenspektralbibliotheken (SSLs), die physisch-chemische und spektrale Bodeneigenschaften enthalten. Hierbei besteht die Herausforderung in der sinkenden Modellgenauigkeit mit zunehmender Größe des Untersuchungsgebiets. Deshalb war das erste Ziel die verbesserte Ableitung des SOC-Gehalts mittels Laborspektren und der europaweiten LUCAS SSL. Besonders ein memory-based learning Algorithmus (local partial least squares regression: local PLSR) konnte die Modellgenauigkeit verbessern. Um diesen auf Laborspektren basierenden Ansatz auf EO Sensoren anwenden zu können, wurde ein zweistufiger Ansatz entwickelt, um die Unterschiede zwischen Labor- und EO-Bildspektren zu überwinden. Die local PLSR basiert auf spektralen ähnlichkeiten und verwendet in der LUCAS SSL gespeicherte Zusammenhänge. Die Vorteile sind, dass wenige lokale Bodenproben und nur Laborspektren als Eingangsparameter benötigt werden, deren Messungen durch wegfallende chemische Analysen zerstörungsfrei, schnell und günstig sind. SOC-Karten wurden erfolgreich mit Luft- und Satellitenbildern erstellt. Diese SOC-Karten stellen den aktuellen Zustand zum Zeitpunkt der Bildaufnahmen dar und können mit neueren Bilddaten aktualisiert werden. Um die räumliche Abdeckung der SOC-Karten zu erhöhen, wurden zwei innovative multitemporale Methoden getestet. Das betrifft besonders Agrarflächen, in denen die erforderlichen unbedeckten Böden zumindest temporär verfügbar sind. Diese Methoden basieren entweder auf einem synthetischen Komposit der unbedeckten Böden und anschließender SOC-Modellierung, oder auf separaten SOC-Karten, die für jedes Bild erstellt und am Ende zusammengeführt wurden. Die zweite Methode erzielte generell höhere Modellgenauigkeiten. Die zukünftige Verfügbarkeit längerer Zeitreihen von hyperspektralen Satellitendaten, kann einen wertvollen Beitrag zur Beobachtung von SOC-Veränderungen in der obersten Bodenschicht leisten.

Zitieren

Estimation of soil organic carbon using hyperspectral remote sensing data and a large scale soil spectral library: from laboratory to space. / Ward, Kathrin Jennifer.
Hannover, 2024. 143 S.

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Download
@phdthesis{d76c7db8ebad422ea43462ccc95e1b25,
title = "Estimation of soil organic carbon using hyperspectral remote sensing data and a large scale soil spectral library: from laboratory to space",
abstract = "Our soils are the largest terrestrial carbon storage of the planet. With proceeding climate change and to retain food security for a growing human population, the pressure rises to increase the knowledge about the soil{\textquoteright}s current status and especially its carbon content. Mapping the status of the soil carbon content presents a challenge, especially for larger areas, since conventional methods require extensive sample collection and expensive laboratory analyses. To fully utilise the soil{\textquoteright}s capacity and preserve the its health in the future, it is required to monitor key soil parameters thereby adding a temporal dimension. Therefore, suitable approaches are needed to estimate the carbon content regularly and on larger scales. Soil spectroscopy has the potential to support this aim. At laboratory and airborne scale soil spectroscopy already proved to be an accurate method to estimate certain soil properties. Recently, advanced optical hyperspectral spaceborne imaging sensors have become available that have the potential to create quantitative soil carbon maps. These Earth observation (EO) sensors can also be a future monitoring tool to e.g. combat soil degradation. In this thesis, approaches were developed and applied to evaluate these new hyperspectral EO sensors to map the spectrally active soil organic carbon (SOC) content at different scales. Ground reference data represent a bottle neck but are essential for model generation and evaluation. A potential solution is the additional usage of existing large scale soil spectral libraries (SSLs) which contain information on physiochemical and spectral properties. Thereby, the challenge is the decreasing model accuracy with increasing size of the study site. Therefore, the first aim was to improve the prediction accuracy of SOC content using laboratory spectra and the European wide LUCAS SSL. Especially a memory-based learning approach (local partial least square regression: local PLSR) could improve the prediction accuracy. To apply this laboratory based approach to EO sensors, an approach using two steps was defined to bridge the gap between the dissimilar laboratory and EO image spectra. The local PLSR is based on spectral similarity and uses of the memorized connections contained in the LUCAS SSL. The advantage of this technique is that few soil samples from the study site are required as input and thereof solely laboratory spectra. Laboratory spectra are non-destructive, fast, and cheaper since no chemical analyses are required. SOC maps were successfully generated using airborne and spaceborne images. These SOC maps represent the status quo at the image acquisition date and can be updated with new image data. To further increase the spatial coverage of the SOC maps innovative multitemporal compositing workflows were evaluated. This mostly applies to agricultural areas which have the required but temporarily limited bare soils. Two different workflows were inspected that were either based on a synthetical bare soil composite and subsequent SOC modelling, or on separate SOC maps that were generated for each image and merged in the end. The second workflow led to higher model accuracies. The future availability of longer time-series of spaceborne imaging spectroscopy data can be a valuable source to help monitor SOC changes in the uppermost soil layer.",
author = "Ward, {Kathrin Jennifer}",
year = "2024",
month = jun,
day = "24",
doi = "10.15488/17781",
language = "English",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - Estimation of soil organic carbon using hyperspectral remote sensing data and a large scale soil spectral library

T2 - from laboratory to space

AU - Ward, Kathrin Jennifer

PY - 2024/6/24

Y1 - 2024/6/24

N2 - Our soils are the largest terrestrial carbon storage of the planet. With proceeding climate change and to retain food security for a growing human population, the pressure rises to increase the knowledge about the soil’s current status and especially its carbon content. Mapping the status of the soil carbon content presents a challenge, especially for larger areas, since conventional methods require extensive sample collection and expensive laboratory analyses. To fully utilise the soil’s capacity and preserve the its health in the future, it is required to monitor key soil parameters thereby adding a temporal dimension. Therefore, suitable approaches are needed to estimate the carbon content regularly and on larger scales. Soil spectroscopy has the potential to support this aim. At laboratory and airborne scale soil spectroscopy already proved to be an accurate method to estimate certain soil properties. Recently, advanced optical hyperspectral spaceborne imaging sensors have become available that have the potential to create quantitative soil carbon maps. These Earth observation (EO) sensors can also be a future monitoring tool to e.g. combat soil degradation. In this thesis, approaches were developed and applied to evaluate these new hyperspectral EO sensors to map the spectrally active soil organic carbon (SOC) content at different scales. Ground reference data represent a bottle neck but are essential for model generation and evaluation. A potential solution is the additional usage of existing large scale soil spectral libraries (SSLs) which contain information on physiochemical and spectral properties. Thereby, the challenge is the decreasing model accuracy with increasing size of the study site. Therefore, the first aim was to improve the prediction accuracy of SOC content using laboratory spectra and the European wide LUCAS SSL. Especially a memory-based learning approach (local partial least square regression: local PLSR) could improve the prediction accuracy. To apply this laboratory based approach to EO sensors, an approach using two steps was defined to bridge the gap between the dissimilar laboratory and EO image spectra. The local PLSR is based on spectral similarity and uses of the memorized connections contained in the LUCAS SSL. The advantage of this technique is that few soil samples from the study site are required as input and thereof solely laboratory spectra. Laboratory spectra are non-destructive, fast, and cheaper since no chemical analyses are required. SOC maps were successfully generated using airborne and spaceborne images. These SOC maps represent the status quo at the image acquisition date and can be updated with new image data. To further increase the spatial coverage of the SOC maps innovative multitemporal compositing workflows were evaluated. This mostly applies to agricultural areas which have the required but temporarily limited bare soils. Two different workflows were inspected that were either based on a synthetical bare soil composite and subsequent SOC modelling, or on separate SOC maps that were generated for each image and merged in the end. The second workflow led to higher model accuracies. The future availability of longer time-series of spaceborne imaging spectroscopy data can be a valuable source to help monitor SOC changes in the uppermost soil layer.

AB - Our soils are the largest terrestrial carbon storage of the planet. With proceeding climate change and to retain food security for a growing human population, the pressure rises to increase the knowledge about the soil’s current status and especially its carbon content. Mapping the status of the soil carbon content presents a challenge, especially for larger areas, since conventional methods require extensive sample collection and expensive laboratory analyses. To fully utilise the soil’s capacity and preserve the its health in the future, it is required to monitor key soil parameters thereby adding a temporal dimension. Therefore, suitable approaches are needed to estimate the carbon content regularly and on larger scales. Soil spectroscopy has the potential to support this aim. At laboratory and airborne scale soil spectroscopy already proved to be an accurate method to estimate certain soil properties. Recently, advanced optical hyperspectral spaceborne imaging sensors have become available that have the potential to create quantitative soil carbon maps. These Earth observation (EO) sensors can also be a future monitoring tool to e.g. combat soil degradation. In this thesis, approaches were developed and applied to evaluate these new hyperspectral EO sensors to map the spectrally active soil organic carbon (SOC) content at different scales. Ground reference data represent a bottle neck but are essential for model generation and evaluation. A potential solution is the additional usage of existing large scale soil spectral libraries (SSLs) which contain information on physiochemical and spectral properties. Thereby, the challenge is the decreasing model accuracy with increasing size of the study site. Therefore, the first aim was to improve the prediction accuracy of SOC content using laboratory spectra and the European wide LUCAS SSL. Especially a memory-based learning approach (local partial least square regression: local PLSR) could improve the prediction accuracy. To apply this laboratory based approach to EO sensors, an approach using two steps was defined to bridge the gap between the dissimilar laboratory and EO image spectra. The local PLSR is based on spectral similarity and uses of the memorized connections contained in the LUCAS SSL. The advantage of this technique is that few soil samples from the study site are required as input and thereof solely laboratory spectra. Laboratory spectra are non-destructive, fast, and cheaper since no chemical analyses are required. SOC maps were successfully generated using airborne and spaceborne images. These SOC maps represent the status quo at the image acquisition date and can be updated with new image data. To further increase the spatial coverage of the SOC maps innovative multitemporal compositing workflows were evaluated. This mostly applies to agricultural areas which have the required but temporarily limited bare soils. Two different workflows were inspected that were either based on a synthetical bare soil composite and subsequent SOC modelling, or on separate SOC maps that were generated for each image and merged in the end. The second workflow led to higher model accuracies. The future availability of longer time-series of spaceborne imaging spectroscopy data can be a valuable source to help monitor SOC changes in the uppermost soil layer.

U2 - 10.15488/17781

DO - 10.15488/17781

M3 - Doctoral thesis

CY - Hannover

ER -