Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 080503 |
Fachzeitschrift | Physical review letters |
Jahrgang | 95 |
Ausgabenummer | 8 |
Publikationsstatus | Veröffentlicht - 19 Aug. 2005 |
Extern publiziert | Ja |
Abstract
With a combination of the quantum repeater and the cluster state approaches, we show that efficient quantum computation can be constructed even if all the entangling quantum gates only succeed with an arbitrarily small probability p. The required computational overhead scales efficiently both with 1/p and n, where n is the number of qubits in the computation. This approach provides an efficient way to combat noise in a class of quantum computation implementation schemes, where the dominant noise leads to probabilistic signaled errors with an error probability 1-p far beyond any threshold requirement.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Allgemeine Physik und Astronomie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Physical review letters, Jahrgang 95, Nr. 8, 080503, 19.08.2005.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Efficient Quantum Computation with Probabilistic Quantum Gates
AU - Duan, L. M.
AU - Raussendorf, R.
PY - 2005/8/19
Y1 - 2005/8/19
N2 - With a combination of the quantum repeater and the cluster state approaches, we show that efficient quantum computation can be constructed even if all the entangling quantum gates only succeed with an arbitrarily small probability p. The required computational overhead scales efficiently both with 1/p and n, where n is the number of qubits in the computation. This approach provides an efficient way to combat noise in a class of quantum computation implementation schemes, where the dominant noise leads to probabilistic signaled errors with an error probability 1-p far beyond any threshold requirement.
AB - With a combination of the quantum repeater and the cluster state approaches, we show that efficient quantum computation can be constructed even if all the entangling quantum gates only succeed with an arbitrarily small probability p. The required computational overhead scales efficiently both with 1/p and n, where n is the number of qubits in the computation. This approach provides an efficient way to combat noise in a class of quantum computation implementation schemes, where the dominant noise leads to probabilistic signaled errors with an error probability 1-p far beyond any threshold requirement.
UR - http://www.scopus.com/inward/record.url?scp=27144548809&partnerID=8YFLogxK
U2 - 10.48550/arXiv.quant-ph/0502120
DO - 10.48550/arXiv.quant-ph/0502120
M3 - Article
AN - SCOPUS:27144548809
VL - 95
JO - Physical review letters
JF - Physical review letters
SN - 0031-9007
IS - 8
M1 - 080503
ER -