Efficient decoding of topological color codes

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

Externe Organisationen

  • University of British Columbia
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer022317
FachzeitschriftPhysical Review A - Atomic, Molecular, and Optical Physics
Jahrgang85
Ausgabenummer2
PublikationsstatusVeröffentlicht - 13 Feb. 2012
Extern publiziertJa

Abstract

Color codes are a class of topological quantum codes with a high error threshold and a large set of transversal encoded gates and are thus suitable for fault-tolerant quantum computation in two-dimensional architectures. Recently, computationally efficient decoders for the color codes were proposed. We describe an alternate efficient iterative decoder for topological color codes and apply it to the color code on the hexagonal lattice embedded on a torus. In numerical simulations, we find an error threshold of 7.8% for independent dephasing and spin-flip errors.

ASJC Scopus Sachgebiete

Zitieren

Efficient decoding of topological color codes. / Sarvepalli, Pradeep; Raussendorf, Robert.
in: Physical Review A - Atomic, Molecular, and Optical Physics, Jahrgang 85, Nr. 2, 022317, 13.02.2012.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Sarvepalli P, Raussendorf R. Efficient decoding of topological color codes. Physical Review A - Atomic, Molecular, and Optical Physics. 2012 Feb 13;85(2):022317. doi: 10.48550/arXiv.1111.0831, 10.1103/PhysRevA.85.022317
Download
@article{bfe714fc0e8f4a22a9200f633b5cc990,
title = "Efficient decoding of topological color codes",
abstract = "Color codes are a class of topological quantum codes with a high error threshold and a large set of transversal encoded gates and are thus suitable for fault-tolerant quantum computation in two-dimensional architectures. Recently, computationally efficient decoders for the color codes were proposed. We describe an alternate efficient iterative decoder for topological color codes and apply it to the color code on the hexagonal lattice embedded on a torus. In numerical simulations, we find an error threshold of 7.8% for independent dephasing and spin-flip errors.",
author = "Pradeep Sarvepalli and Robert Raussendorf",
year = "2012",
month = feb,
day = "13",
doi = "10.48550/arXiv.1111.0831",
language = "English",
volume = "85",
journal = "Physical Review A - Atomic, Molecular, and Optical Physics",
issn = "1050-2947",
publisher = "American Physical Society",
number = "2",

}

Download

TY - JOUR

T1 - Efficient decoding of topological color codes

AU - Sarvepalli, Pradeep

AU - Raussendorf, Robert

PY - 2012/2/13

Y1 - 2012/2/13

N2 - Color codes are a class of topological quantum codes with a high error threshold and a large set of transversal encoded gates and are thus suitable for fault-tolerant quantum computation in two-dimensional architectures. Recently, computationally efficient decoders for the color codes were proposed. We describe an alternate efficient iterative decoder for topological color codes and apply it to the color code on the hexagonal lattice embedded on a torus. In numerical simulations, we find an error threshold of 7.8% for independent dephasing and spin-flip errors.

AB - Color codes are a class of topological quantum codes with a high error threshold and a large set of transversal encoded gates and are thus suitable for fault-tolerant quantum computation in two-dimensional architectures. Recently, computationally efficient decoders for the color codes were proposed. We describe an alternate efficient iterative decoder for topological color codes and apply it to the color code on the hexagonal lattice embedded on a torus. In numerical simulations, we find an error threshold of 7.8% for independent dephasing and spin-flip errors.

UR - http://www.scopus.com/inward/record.url?scp=84856866304&partnerID=8YFLogxK

U2 - 10.48550/arXiv.1111.0831

DO - 10.48550/arXiv.1111.0831

M3 - Article

AN - SCOPUS:84856866304

VL - 85

JO - Physical Review A - Atomic, Molecular, and Optical Physics

JF - Physical Review A - Atomic, Molecular, and Optical Physics

SN - 1050-2947

IS - 2

M1 - 022317

ER -

Von denselben Autoren