Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 17-23 |
Seitenumfang | 7 |
Fachzeitschrift | Soil and Tillage Research |
Jahrgang | 124 |
Publikationsstatus | Veröffentlicht - Aug. 2012 |
Extern publiziert | Ja |
Abstract
Vegetation restoration is expected to improve soil microstructure and therefore enhance soil stability and reduce soil erosion. The objective of this study was to evaluate the effect of long-term vegetation restoration on the modification of aggregate microstructure with synchrotron-based high resolution X-ray micro-computed tomography (SR-μCT). Triplicate aggregates (5-mm diameter) from (a) severely eroded bare land (BL) and (b) two decades of vegetation restoration land (RL) from Ultisol, Southern China, were collected and scanned with 9μm voxel-resolution at SSRF (Shanghai Synchrotron Radiation Facility). ImageJ software and multifractal theory were used to analyze and quantify aggregate pore structure. Aggregate water stability, mechanical stability, and basic soil properties were also evaluated. Results showed that aggregate water stability and SOM content significantly increased in the RL treatment, while aggregate mechanical stability showed an inverse trend. The microstructure of aggregates had evolved from a very dense massive microstructure to a more porous hierarchical microstructure after two decades of vegetation restoration. Porosity, macro-porosity, fraction of elongated pores, and specific surface area were significantly higher in the RL aggregates as compared to the BL aggregates. Multifractal scaling was observed for the pore structure of the studied aggregates. Generalized dimensions (D q) were significantly higher in the RL treatment as compared to BL treatment, indicating improved pore system after vegetation restoration. This improved microstructure of RL aggregates was attributed to the increased SOM that prompted soil aggregation. This study showed the positive effects of vegetation restoration on soil microstructure and water stability, which was beneficial to the reduction of soil erosion and to the improvement of soil quality in this region.
ASJC Scopus Sachgebiete
- Agrar- und Biowissenschaften (insg.)
- Agronomie und Nutzpflanzenwissenschaften
- Agrar- und Biowissenschaften (insg.)
- Bodenkunde
- Erdkunde und Planetologie (insg.)
- Erdoberflächenprozesse
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Soil and Tillage Research, Jahrgang 124, 08.2012, S. 17-23.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Effects of vegetation restoration on soil aggregate microstructure quantified with synchrotron-based micro-computed tomography
AU - Zhou, H.
AU - Peng, X.
AU - Peth, S.
AU - Xiao, T. Q.
N1 - Funding Information: This work was supported by National Natural Science Foundation of China (grant numbers 41101200 and 41171180 ), the National Key Technology R&D Program of China ( 2011BAD31B04 ), and the “100 Talents Program” of the Chinese Academy of Sciences . The authors thank SSRF (Shanghai Synchrotron Radiation facility) for supporting the use of the radiation source.
PY - 2012/8
Y1 - 2012/8
N2 - Vegetation restoration is expected to improve soil microstructure and therefore enhance soil stability and reduce soil erosion. The objective of this study was to evaluate the effect of long-term vegetation restoration on the modification of aggregate microstructure with synchrotron-based high resolution X-ray micro-computed tomography (SR-μCT). Triplicate aggregates (5-mm diameter) from (a) severely eroded bare land (BL) and (b) two decades of vegetation restoration land (RL) from Ultisol, Southern China, were collected and scanned with 9μm voxel-resolution at SSRF (Shanghai Synchrotron Radiation Facility). ImageJ software and multifractal theory were used to analyze and quantify aggregate pore structure. Aggregate water stability, mechanical stability, and basic soil properties were also evaluated. Results showed that aggregate water stability and SOM content significantly increased in the RL treatment, while aggregate mechanical stability showed an inverse trend. The microstructure of aggregates had evolved from a very dense massive microstructure to a more porous hierarchical microstructure after two decades of vegetation restoration. Porosity, macro-porosity, fraction of elongated pores, and specific surface area were significantly higher in the RL aggregates as compared to the BL aggregates. Multifractal scaling was observed for the pore structure of the studied aggregates. Generalized dimensions (D q) were significantly higher in the RL treatment as compared to BL treatment, indicating improved pore system after vegetation restoration. This improved microstructure of RL aggregates was attributed to the increased SOM that prompted soil aggregation. This study showed the positive effects of vegetation restoration on soil microstructure and water stability, which was beneficial to the reduction of soil erosion and to the improvement of soil quality in this region.
AB - Vegetation restoration is expected to improve soil microstructure and therefore enhance soil stability and reduce soil erosion. The objective of this study was to evaluate the effect of long-term vegetation restoration on the modification of aggregate microstructure with synchrotron-based high resolution X-ray micro-computed tomography (SR-μCT). Triplicate aggregates (5-mm diameter) from (a) severely eroded bare land (BL) and (b) two decades of vegetation restoration land (RL) from Ultisol, Southern China, were collected and scanned with 9μm voxel-resolution at SSRF (Shanghai Synchrotron Radiation Facility). ImageJ software and multifractal theory were used to analyze and quantify aggregate pore structure. Aggregate water stability, mechanical stability, and basic soil properties were also evaluated. Results showed that aggregate water stability and SOM content significantly increased in the RL treatment, while aggregate mechanical stability showed an inverse trend. The microstructure of aggregates had evolved from a very dense massive microstructure to a more porous hierarchical microstructure after two decades of vegetation restoration. Porosity, macro-porosity, fraction of elongated pores, and specific surface area were significantly higher in the RL aggregates as compared to the BL aggregates. Multifractal scaling was observed for the pore structure of the studied aggregates. Generalized dimensions (D q) were significantly higher in the RL treatment as compared to BL treatment, indicating improved pore system after vegetation restoration. This improved microstructure of RL aggregates was attributed to the increased SOM that prompted soil aggregation. This study showed the positive effects of vegetation restoration on soil microstructure and water stability, which was beneficial to the reduction of soil erosion and to the improvement of soil quality in this region.
KW - Micro-computed tomography
KW - Microstructure
KW - Multifractal
KW - Soil aggregate
KW - Vegetation restoration
UR - http://www.scopus.com/inward/record.url?scp=84861329521&partnerID=8YFLogxK
U2 - 10.1016/j.still.2012.04.006
DO - 10.1016/j.still.2012.04.006
M3 - Article
AN - SCOPUS:84861329521
VL - 124
SP - 17
EP - 23
JO - Soil and Tillage Research
JF - Soil and Tillage Research
SN - 0167-1987
ER -