Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 31-78 |
Seitenumfang | 48 |
Fachzeitschrift | Analysis mathematica |
Jahrgang | 50 |
Ausgabenummer | 1 |
Frühes Online-Datum | 13 März 2024 |
Publikationsstatus | Veröffentlicht - März 2024 |
Abstract
In this paper, we consider vector-valued Bergman–Orlicz spaces which are generalization of classical vector-valued Bergman spaces. We characterize the dual space of vector-valued Bergman–Orlicz space, and study the boundedness of the little Hankel operators, hb, with operator-valued symbols b, between different weighted vector-valued Bergman–Orlicz spaces on the unit ball Bn.More precisely, given two complex Banach spaces X, Y, we characterize those operator-valued symbolsb:Bn→L(X¯,Y) for which the little Hankel operator hb:AαΦ1(Bn,X)⟶AαΦ2(Bn,Y), extends into a bounded operator, where Φ1 and Φ2 are either convex or concave growth functions.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Analysis
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Analysis mathematica, Jahrgang 50, Nr. 1, 03.2024, S. 31-78.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Duality for vector-valued Bergman–Orlicz spaces and little Hankel operators between vector-valued Bergman–Orlicz spaces on the unit ball
AU - Békollè, D.
AU - Mfouapon, T.
AU - Tchoundja, E. L.
PY - 2024/3
Y1 - 2024/3
N2 - In this paper, we consider vector-valued Bergman–Orlicz spaces which are generalization of classical vector-valued Bergman spaces. We characterize the dual space of vector-valued Bergman–Orlicz space, and study the boundedness of the little Hankel operators, hb, with operator-valued symbols b, between different weighted vector-valued Bergman–Orlicz spaces on the unit ball Bn.More precisely, given two complex Banach spaces X, Y, we characterize those operator-valued symbolsb:Bn→L(X¯,Y) for which the little Hankel operator hb:AαΦ1(Bn,X)⟶AαΦ2(Bn,Y), extends into a bounded operator, where Φ1 and Φ2 are either convex or concave growth functions.
AB - In this paper, we consider vector-valued Bergman–Orlicz spaces which are generalization of classical vector-valued Bergman spaces. We characterize the dual space of vector-valued Bergman–Orlicz space, and study the boundedness of the little Hankel operators, hb, with operator-valued symbols b, between different weighted vector-valued Bergman–Orlicz spaces on the unit ball Bn.More precisely, given two complex Banach spaces X, Y, we characterize those operator-valued symbolsb:Bn→L(X¯,Y) for which the little Hankel operator hb:AαΦ1(Bn,X)⟶AαΦ2(Bn,Y), extends into a bounded operator, where Φ1 and Φ2 are either convex or concave growth functions.
KW - little Hankel operator
KW - operator-valued symbol
KW - vector-valued Bergman–Orlicz space
KW - 47B90
KW - 32A36
KW - 32A10
KW - 46E40
UR - http://www.scopus.com/inward/record.url?scp=85187677103&partnerID=8YFLogxK
U2 - 10.1007/s10476-024-00002-3
DO - 10.1007/s10476-024-00002-3
M3 - Article
AN - SCOPUS:85187677103
VL - 50
SP - 31
EP - 78
JO - Analysis mathematica
JF - Analysis mathematica
SN - 0133-3852
IS - 1
ER -