Loading [MathJax]/extensions/tex2jax.js

Deep Learning and Inverse Design in Plasmonic

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Autorschaft

Externe Organisationen

  • University of Ottawa
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 1
  • Captures
    • Readers: 12
see details

Details

OriginalspracheEnglisch
Titel des Sammelwerks19th International Conference on Numerical Simulation of Optoelectronic Devices, NUSOD 2019
Herausgeber/-innenKarin Hinzer, Joachim Piprek
Herausgeber (Verlag)IEEE Computer Society
Seiten3-4
Seitenumfang2
ISBN (elektronisch)9781728116471
PublikationsstatusVeröffentlicht - 2019
Extern publiziertJa
Veranstaltung19th International Conference on Numerical Simulation of Optoelectronic Devices, NUSOD 2019 - Ottawa, Kanada
Dauer: 8 Juli 201912 Juli 2019

Publikationsreihe

NameProceedings of the International Conference on Numerical Simulation of Optoelectronic Devices, NUSOD
Band2019-July
ISSN (Print)2158-3234

Abstract

Laser pulses can colour noble metals by inducing nanoparticles on their surface. The colours are linked to laser parameters and nanoparticles geometry. We apply deep learning to the direct prediction of colours from a laser parameter set or a nanoparticle particle distribution. A new method for inverse design via deep learning is also proposed to retrieve the appropriate laser parameters or nanoparticle distribution given the desired colour.

ASJC Scopus Sachgebiete

Zitieren

Deep Learning and Inverse Design in Plasmonic. / Baxter, Joshua; Lesina, Antonino Cala; Guay, Jean Michel et al.
19th International Conference on Numerical Simulation of Optoelectronic Devices, NUSOD 2019. Hrsg. / Karin Hinzer; Joachim Piprek. IEEE Computer Society, 2019. S. 3-4 8806817 (Proceedings of the International Conference on Numerical Simulation of Optoelectronic Devices, NUSOD; Band 2019-July).

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Baxter, J, Lesina, AC, Guay, JM, Weck, A, Berini, P & Ramunno, L 2019, Deep Learning and Inverse Design in Plasmonic. in K Hinzer & J Piprek (Hrsg.), 19th International Conference on Numerical Simulation of Optoelectronic Devices, NUSOD 2019., 8806817, Proceedings of the International Conference on Numerical Simulation of Optoelectronic Devices, NUSOD, Bd. 2019-July, IEEE Computer Society, S. 3-4, 19th International Conference on Numerical Simulation of Optoelectronic Devices, NUSOD 2019, Ottawa, Kanada, 8 Juli 2019. https://doi.org/10.1109/nusod.2019.8806817
Baxter, J., Lesina, A. C., Guay, J. M., Weck, A., Berini, P., & Ramunno, L. (2019). Deep Learning and Inverse Design in Plasmonic. In K. Hinzer, & J. Piprek (Hrsg.), 19th International Conference on Numerical Simulation of Optoelectronic Devices, NUSOD 2019 (S. 3-4). Artikel 8806817 (Proceedings of the International Conference on Numerical Simulation of Optoelectronic Devices, NUSOD; Band 2019-July). IEEE Computer Society. https://doi.org/10.1109/nusod.2019.8806817
Baxter J, Lesina AC, Guay JM, Weck A, Berini P, Ramunno L. Deep Learning and Inverse Design in Plasmonic. in Hinzer K, Piprek J, Hrsg., 19th International Conference on Numerical Simulation of Optoelectronic Devices, NUSOD 2019. IEEE Computer Society. 2019. S. 3-4. 8806817. (Proceedings of the International Conference on Numerical Simulation of Optoelectronic Devices, NUSOD). doi: 10.1109/nusod.2019.8806817
Baxter, Joshua ; Lesina, Antonino Cala ; Guay, Jean Michel et al. / Deep Learning and Inverse Design in Plasmonic. 19th International Conference on Numerical Simulation of Optoelectronic Devices, NUSOD 2019. Hrsg. / Karin Hinzer ; Joachim Piprek. IEEE Computer Society, 2019. S. 3-4 (Proceedings of the International Conference on Numerical Simulation of Optoelectronic Devices, NUSOD).
Download
@inproceedings{89093b748c5d4e3abf10e4e490245e07,
title = "Deep Learning and Inverse Design in Plasmonic",
abstract = "Laser pulses can colour noble metals by inducing nanoparticles on their surface. The colours are linked to laser parameters and nanoparticles geometry. We apply deep learning to the direct prediction of colours from a laser parameter set or a nanoparticle particle distribution. A new method for inverse design via deep learning is also proposed to retrieve the appropriate laser parameters or nanoparticle distribution given the desired colour.",
keywords = "Deep Learning, FDTD, Inverse Design, Plasmonic Colours",
author = "Joshua Baxter and Lesina, {Antonino Cala} and Guay, {Jean Michel} and Arnaud Weck and Pierre Berini and Lora Ramunno",
note = "Funding information: ACKNOWLEDGEMTS This work was financially supported by the National Science and Engineering Research Council of Canada, the Canada Research Chairs program, SOSCIP and IBM Canada. We acknowledge the technical support of Scinet.; 19th International Conference on Numerical Simulation of Optoelectronic Devices, NUSOD 2019 ; Conference date: 08-07-2019 Through 12-07-2019",
year = "2019",
doi = "10.1109/nusod.2019.8806817",
language = "English",
series = "Proceedings of the International Conference on Numerical Simulation of Optoelectronic Devices, NUSOD",
publisher = "IEEE Computer Society",
pages = "3--4",
editor = "Karin Hinzer and Joachim Piprek",
booktitle = "19th International Conference on Numerical Simulation of Optoelectronic Devices, NUSOD 2019",
address = "United States",

}

Download

TY - GEN

T1 - Deep Learning and Inverse Design in Plasmonic

AU - Baxter, Joshua

AU - Lesina, Antonino Cala

AU - Guay, Jean Michel

AU - Weck, Arnaud

AU - Berini, Pierre

AU - Ramunno, Lora

N1 - Funding information: ACKNOWLEDGEMTS This work was financially supported by the National Science and Engineering Research Council of Canada, the Canada Research Chairs program, SOSCIP and IBM Canada. We acknowledge the technical support of Scinet.

PY - 2019

Y1 - 2019

N2 - Laser pulses can colour noble metals by inducing nanoparticles on their surface. The colours are linked to laser parameters and nanoparticles geometry. We apply deep learning to the direct prediction of colours from a laser parameter set or a nanoparticle particle distribution. A new method for inverse design via deep learning is also proposed to retrieve the appropriate laser parameters or nanoparticle distribution given the desired colour.

AB - Laser pulses can colour noble metals by inducing nanoparticles on their surface. The colours are linked to laser parameters and nanoparticles geometry. We apply deep learning to the direct prediction of colours from a laser parameter set or a nanoparticle particle distribution. A new method for inverse design via deep learning is also proposed to retrieve the appropriate laser parameters or nanoparticle distribution given the desired colour.

KW - Deep Learning

KW - FDTD

KW - Inverse Design

KW - Plasmonic Colours

UR - http://www.scopus.com/inward/record.url?scp=85071875348&partnerID=8YFLogxK

U2 - 10.1109/nusod.2019.8806817

DO - 10.1109/nusod.2019.8806817

M3 - Conference contribution

AN - SCOPUS:85071875348

T3 - Proceedings of the International Conference on Numerical Simulation of Optoelectronic Devices, NUSOD

SP - 3

EP - 4

BT - 19th International Conference on Numerical Simulation of Optoelectronic Devices, NUSOD 2019

A2 - Hinzer, Karin

A2 - Piprek, Joachim

PB - IEEE Computer Society

T2 - 19th International Conference on Numerical Simulation of Optoelectronic Devices, NUSOD 2019

Y2 - 8 July 2019 through 12 July 2019

ER -

Von denselben Autoren