Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 7807-7814 |
Seitenumfang | 8 |
Fachzeitschrift | Journal of Bacteriology |
Jahrgang | 188 |
Ausgabenummer | 22 |
Publikationsstatus | Veröffentlicht - Nov. 2006 |
Abstract
The Tat system allows the translocation of folded and often cofactor-containing proteins across biological membranes. Here, we show by an interspecies transfer of a complete Tat translocon that Tat systems are largely, but not fully, interchangeable even between different classes of proteobacteria. The Tat apparatus from the α-proteobacterium Rhodobacter capsulatus was transferred to a Tat-deficient Escherichia coli strain, which is a γ-proteobacterium. Similar to that of E. coli, the R. capsulatus Tat system consists of three components, rc-TatA, rc-TatB, and rc-TatC. A fourth gene (rc-tatF) is present in the rc-tatABCF operon which has no apparent relevance for translocation. The translational starts of rc-tatC and rc-tatF overlap in four nucleotides (ATGA) with the preceding tat genes, pointing to efficient translational coupling of rc-tatB, rc-tatC, and rc-tatF. We show by a variety of physiological and biochemical assays that the R. capsulatus Tat system functionally targets the E. coli Tat substrates TorA, AmiA, AmiC, and formate dehydrogenase. Even a Tat substrate from a third organism is accepted, demonstrating that usually Tat systems and Tat substrates from different proteobacteria are compatible with each other. Only one exceptional Tat substrate of E. coli, a membrane-anchored dimethyl sulfoxide (DMSO) reductase, was not targeted by the R. capsulatus Tat system, resulting in a DMSO respiration deficiency. Although the general features of Tat substrates and translocons are similar between species, the data indicate that details in the targeting pathways can vary considerably.
ASJC Scopus Sachgebiete
- Immunologie und Mikrobiologie (insg.)
- Mikrobiologie
- Biochemie, Genetik und Molekularbiologie (insg.)
- Molekularbiologie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of Bacteriology, Jahrgang 188, Nr. 22, 11.2006, S. 7807-7814.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Conservation and variation between Rhodobacter capsulatus and Escherichia coli Tat systems
AU - Lindenstrauß, Ute
AU - Brüser, Thomas
N1 - Copyright: Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2006/11
Y1 - 2006/11
N2 - The Tat system allows the translocation of folded and often cofactor-containing proteins across biological membranes. Here, we show by an interspecies transfer of a complete Tat translocon that Tat systems are largely, but not fully, interchangeable even between different classes of proteobacteria. The Tat apparatus from the α-proteobacterium Rhodobacter capsulatus was transferred to a Tat-deficient Escherichia coli strain, which is a γ-proteobacterium. Similar to that of E. coli, the R. capsulatus Tat system consists of three components, rc-TatA, rc-TatB, and rc-TatC. A fourth gene (rc-tatF) is present in the rc-tatABCF operon which has no apparent relevance for translocation. The translational starts of rc-tatC and rc-tatF overlap in four nucleotides (ATGA) with the preceding tat genes, pointing to efficient translational coupling of rc-tatB, rc-tatC, and rc-tatF. We show by a variety of physiological and biochemical assays that the R. capsulatus Tat system functionally targets the E. coli Tat substrates TorA, AmiA, AmiC, and formate dehydrogenase. Even a Tat substrate from a third organism is accepted, demonstrating that usually Tat systems and Tat substrates from different proteobacteria are compatible with each other. Only one exceptional Tat substrate of E. coli, a membrane-anchored dimethyl sulfoxide (DMSO) reductase, was not targeted by the R. capsulatus Tat system, resulting in a DMSO respiration deficiency. Although the general features of Tat substrates and translocons are similar between species, the data indicate that details in the targeting pathways can vary considerably.
AB - The Tat system allows the translocation of folded and often cofactor-containing proteins across biological membranes. Here, we show by an interspecies transfer of a complete Tat translocon that Tat systems are largely, but not fully, interchangeable even between different classes of proteobacteria. The Tat apparatus from the α-proteobacterium Rhodobacter capsulatus was transferred to a Tat-deficient Escherichia coli strain, which is a γ-proteobacterium. Similar to that of E. coli, the R. capsulatus Tat system consists of three components, rc-TatA, rc-TatB, and rc-TatC. A fourth gene (rc-tatF) is present in the rc-tatABCF operon which has no apparent relevance for translocation. The translational starts of rc-tatC and rc-tatF overlap in four nucleotides (ATGA) with the preceding tat genes, pointing to efficient translational coupling of rc-tatB, rc-tatC, and rc-tatF. We show by a variety of physiological and biochemical assays that the R. capsulatus Tat system functionally targets the E. coli Tat substrates TorA, AmiA, AmiC, and formate dehydrogenase. Even a Tat substrate from a third organism is accepted, demonstrating that usually Tat systems and Tat substrates from different proteobacteria are compatible with each other. Only one exceptional Tat substrate of E. coli, a membrane-anchored dimethyl sulfoxide (DMSO) reductase, was not targeted by the R. capsulatus Tat system, resulting in a DMSO respiration deficiency. Although the general features of Tat substrates and translocons are similar between species, the data indicate that details in the targeting pathways can vary considerably.
UR - http://www.scopus.com/inward/record.url?scp=33751087498&partnerID=8YFLogxK
U2 - 10.1128/JB.01139-06
DO - 10.1128/JB.01139-06
M3 - Article
C2 - 16980457
AN - SCOPUS:33751087498
VL - 188
SP - 7807
EP - 7814
JO - Journal of Bacteriology
JF - Journal of Bacteriology
SN - 0021-9193
IS - 22
ER -