Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | e202206152 |
Seitenumfang | 9 |
Fachzeitschrift | Angewandte Chemie - International Edition |
Jahrgang | 61 |
Ausgabenummer | 41 |
Frühes Online-Datum | 29 Juni 2022 |
Publikationsstatus | Veröffentlicht - 30 Sept. 2022 |
Abstract
Bioinspired asymmetric nanofluidic ion channels with ionic diode behavior that can boost the osmotic energy (so-called blue energy) conversion are highly desirable, especially if they can be easily constructed and modified. Two-dimensional (2D) metal carbides and nitrides, known as MXenes, combine hydrophilic surfaces and tunable surface charge properties, providing a shortcut to prepare asymmetric nanofluidic ion channels. Here, we report a mechanically robust, flexible, and scale-up-friendly asymmetric Ti3C2Tx MXene-based ionic diode membrane with a highly rectified current and demonstrate its potential use in reverse electrodialysis osmotic energy conversion. Under the salinity gradient of synthetic seawater and river water, our ionic diode membrane-based generator‘s power density is 8.6 W m−2 and up to 17.8 W m−2 at a 500-fold salinity gradient, outperforming the state-of-the-art membranes. The design of MXene-based ionic diode-type membrane provides a facile and general strategy in developing large-scale 2D nanofluidics and selective ion transport.
ASJC Scopus Sachgebiete
- Chemische Verfahrenstechnik (insg.)
- Katalyse
- Chemie (insg.)
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Angewandte Chemie - International Edition, Jahrgang 61, Nr. 41, e202206152, 30.09.2022.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Bioinspired Ti3C2Tx MXene-Based Ionic Diode Membrane for High-Efficient Osmotic Energy Conversion
AU - Ding, Li
AU - Zheng, Mengting
AU - Xiao, Dan
AU - Zhao, Zihao
AU - Xue, Jian
AU - Zhang, Shanqing
AU - Caro, Jürgen
AU - Wang, Haihui
N1 - Funding Information: We gratefully acknowledge the funding from the Natural Science Foundation of China (NSFC) (22008077, 22138005, 22138005, 22141001), NSFC‐International Cooperation Project (21861132013), Guangdong Basic and Applied Basic Research Foundation (2019A1515110958), China Postdoctoral Science Foundation (2019TQ0101, 2019M662920).
PY - 2022/9/30
Y1 - 2022/9/30
N2 - Bioinspired asymmetric nanofluidic ion channels with ionic diode behavior that can boost the osmotic energy (so-called blue energy) conversion are highly desirable, especially if they can be easily constructed and modified. Two-dimensional (2D) metal carbides and nitrides, known as MXenes, combine hydrophilic surfaces and tunable surface charge properties, providing a shortcut to prepare asymmetric nanofluidic ion channels. Here, we report a mechanically robust, flexible, and scale-up-friendly asymmetric Ti3C2Tx MXene-based ionic diode membrane with a highly rectified current and demonstrate its potential use in reverse electrodialysis osmotic energy conversion. Under the salinity gradient of synthetic seawater and river water, our ionic diode membrane-based generator‘s power density is 8.6 W m−2 and up to 17.8 W m−2 at a 500-fold salinity gradient, outperforming the state-of-the-art membranes. The design of MXene-based ionic diode-type membrane provides a facile and general strategy in developing large-scale 2D nanofluidics and selective ion transport.
AB - Bioinspired asymmetric nanofluidic ion channels with ionic diode behavior that can boost the osmotic energy (so-called blue energy) conversion are highly desirable, especially if they can be easily constructed and modified. Two-dimensional (2D) metal carbides and nitrides, known as MXenes, combine hydrophilic surfaces and tunable surface charge properties, providing a shortcut to prepare asymmetric nanofluidic ion channels. Here, we report a mechanically robust, flexible, and scale-up-friendly asymmetric Ti3C2Tx MXene-based ionic diode membrane with a highly rectified current and demonstrate its potential use in reverse electrodialysis osmotic energy conversion. Under the salinity gradient of synthetic seawater and river water, our ionic diode membrane-based generator‘s power density is 8.6 W m−2 and up to 17.8 W m−2 at a 500-fold salinity gradient, outperforming the state-of-the-art membranes. The design of MXene-based ionic diode-type membrane provides a facile and general strategy in developing large-scale 2D nanofluidics and selective ion transport.
KW - Ionic Diode
KW - MXene Membrane
KW - Nanofluidic
KW - Osmotic Energy
UR - http://www.scopus.com/inward/record.url?scp=85135911042&partnerID=8YFLogxK
U2 - 10.1002/anie.202206152
DO - 10.1002/anie.202206152
M3 - Article
C2 - 35768337
AN - SCOPUS:85135911042
VL - 61
JO - Angewandte Chemie - International Edition
JF - Angewandte Chemie - International Edition
SN - 1433-7851
IS - 41
M1 - e202206152
ER -