Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 453-458 |
Seitenumfang | 6 |
Fachzeitschrift | International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives |
Jahrgang | 43 |
Ausgabenummer | B1-2022 |
Publikationsstatus | Veröffentlicht - 30 Mai 2022 |
Veranstaltung | 2022 24th ISPRS Congress on Imaging Today, Foreseeing Tomorrow, Commission I - Nice, Frankreich Dauer: 6 Juni 2022 → 11 Juni 2022 |
Abstract
In contrast to stationary systems, mobile robots have an arbitrarily expandable workspace. As a result, the spatial dimensioning of the task to be mastered plays only a subordinate role and can be scaled as desired. For the construction industry in particular, which requires the handling and production of substantial components, mobile robots mean an unlimited expansion of the workspace based on their mobility levels and thus increased flexibility. The greatest challenge in mobile robotics lies with the discrepancy between the precision required for the task and the achievable positioning accuracy. External localization systems show significant potential for improvement in this respect but, in many cases, require a line of sight between the measurement system and the robot or a time-consuming calibration of markers. Therefore, this article presents an approach for an onboard localization system for use in a multi-step additive manufacturing processes for building construction. While a SLAM algorithm is used for the initial estimation of the robot's base at the work site, in a refined estimation step, the positioning accuracy is enhanced using a 2D-laser-scanner. This 2D-scanner is used to create a 3D point cloud of the 3D-printed component each time after a print job of one segment has been carried out and before continuing a print job from a new location, to enable printing of layers on top of each other with sufficient accuracy over many repositioning manouvres. When the robot returns to a position for print continuation, the initial and the new point clouds are compared using an ICP-algorithm, and the resulting transformation is used to refine the robot's pose estimation relative to the 3D-printed building component. While initial experiments demonstrate the approach's potential, transferring it to large-scale 3D-printed components presents additional challenges, highlighted in this paper.
ASJC Scopus Sachgebiete
- Informatik (insg.)
- Information systems
- Sozialwissenschaften (insg.)
- Geografie, Planung und Entwicklung
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, Jahrgang 43, Nr. B1-2022, 30.05.2022, S. 453-458.
Publikation: Beitrag in Fachzeitschrift › Konferenzaufsatz in Fachzeitschrift › Forschung › Peer-Review
}
TY - JOUR
T1 - Autonomous sensing and localization of a mobile robot for multi-step additive manufacturing in construction
AU - Lachmayer, L.
AU - Recker, T.
AU - Dielemans, G.
AU - Dörfler, K.
AU - Raatz, A.
N1 - Funding Information: The authors gratefully acknowledge the funding by the Deutsche Forschungsgemeinschaft (DFG - German Research Foundation) - Project no. 414265976. The authors would like to thank the DFG for the support within the SFB/Transregio 277 – Additive manufacturing in construction. (Subproject B04/B05)
PY - 2022/5/30
Y1 - 2022/5/30
N2 - In contrast to stationary systems, mobile robots have an arbitrarily expandable workspace. As a result, the spatial dimensioning of the task to be mastered plays only a subordinate role and can be scaled as desired. For the construction industry in particular, which requires the handling and production of substantial components, mobile robots mean an unlimited expansion of the workspace based on their mobility levels and thus increased flexibility. The greatest challenge in mobile robotics lies with the discrepancy between the precision required for the task and the achievable positioning accuracy. External localization systems show significant potential for improvement in this respect but, in many cases, require a line of sight between the measurement system and the robot or a time-consuming calibration of markers. Therefore, this article presents an approach for an onboard localization system for use in a multi-step additive manufacturing processes for building construction. While a SLAM algorithm is used for the initial estimation of the robot's base at the work site, in a refined estimation step, the positioning accuracy is enhanced using a 2D-laser-scanner. This 2D-scanner is used to create a 3D point cloud of the 3D-printed component each time after a print job of one segment has been carried out and before continuing a print job from a new location, to enable printing of layers on top of each other with sufficient accuracy over many repositioning manouvres. When the robot returns to a position for print continuation, the initial and the new point clouds are compared using an ICP-algorithm, and the resulting transformation is used to refine the robot's pose estimation relative to the 3D-printed building component. While initial experiments demonstrate the approach's potential, transferring it to large-scale 3D-printed components presents additional challenges, highlighted in this paper.
AB - In contrast to stationary systems, mobile robots have an arbitrarily expandable workspace. As a result, the spatial dimensioning of the task to be mastered plays only a subordinate role and can be scaled as desired. For the construction industry in particular, which requires the handling and production of substantial components, mobile robots mean an unlimited expansion of the workspace based on their mobility levels and thus increased flexibility. The greatest challenge in mobile robotics lies with the discrepancy between the precision required for the task and the achievable positioning accuracy. External localization systems show significant potential for improvement in this respect but, in many cases, require a line of sight between the measurement system and the robot or a time-consuming calibration of markers. Therefore, this article presents an approach for an onboard localization system for use in a multi-step additive manufacturing processes for building construction. While a SLAM algorithm is used for the initial estimation of the robot's base at the work site, in a refined estimation step, the positioning accuracy is enhanced using a 2D-laser-scanner. This 2D-scanner is used to create a 3D point cloud of the 3D-printed component each time after a print job of one segment has been carried out and before continuing a print job from a new location, to enable printing of layers on top of each other with sufficient accuracy over many repositioning manouvres. When the robot returns to a position for print continuation, the initial and the new point clouds are compared using an ICP-algorithm, and the resulting transformation is used to refine the robot's pose estimation relative to the 3D-printed building component. While initial experiments demonstrate the approach's potential, transferring it to large-scale 3D-printed components presents additional challenges, highlighted in this paper.
KW - Adaptive Fabrication
KW - Additive Manufacturing
KW - Architecture and Digital Fabrication
KW - Localization
KW - Mobile robotics
UR - http://www.scopus.com/inward/record.url?scp=85131948592&partnerID=8YFLogxK
U2 - 10.5194/isprs-archives-XLIII-B1-2022-453-2022
DO - 10.5194/isprs-archives-XLIII-B1-2022-453-2022
M3 - Conference article
AN - SCOPUS:85131948592
VL - 43
SP - 453
EP - 458
JO - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
JF - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
SN - 1682-1750
IS - B1-2022
T2 - 2022 24th ISPRS Congress on Imaging Today, Foreseeing Tomorrow, Commission I
Y2 - 6 June 2022 through 11 June 2022
ER -