Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 179-182 |
Seitenumfang | 4 |
Fachzeitschrift | Current Directions in Biomedical Engineering |
Jahrgang | 7 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - 9 Okt. 2021 |
Abstract
In order to achieve the high quality required in medical products, reliable characterization methods and quality management systems are necessary. In the field of musculoskeletal Tissue Engineering (mTE), electrospinning is utilized to manufacture fibre scaffolds as implant material. Depending on the application, in this case the regeneration of tendon-bone junctions, properties like the degree of fibre orientation, homogeneity of fibre throughout the scaffold and reaction to external mechanical load are of particular importance. Currently, destructive methods, like scanning electron microscopy (SEM), are widely used to determine these properties. In addition to the destruction of the samples, these methods often only allow the investigation of very small sections. In this study, we present two new methods for the fast, non-destructive and contactless characterization of electrospun fibre scaffolds for mTE. These methods are based on Transillumination Imaging (TI) and Mueller Matrix Polarimetry (MMP), utilizing low-power laser sources or LED light sources, respectively, to determine the relative homogeneity (TI) and the degree of fibre orientation (MMP) in electrospun fibre scaffolds.
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Biomedizintechnik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Current Directions in Biomedical Engineering, Jahrgang 7, Nr. 2, 09.10.2021, S. 179-182.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Assuring Quality of Scaffolds in Musculoskeletal Tissue Engineering
T2 - Mueller Matrix Polarimetry and Transillumination Imaging
AU - Becker, Alexander
AU - Fricke, Dierk
AU - Roth, Bernhard
AU - Glasmacher, Birgit
PY - 2021/10/9
Y1 - 2021/10/9
N2 - In order to achieve the high quality required in medical products, reliable characterization methods and quality management systems are necessary. In the field of musculoskeletal Tissue Engineering (mTE), electrospinning is utilized to manufacture fibre scaffolds as implant material. Depending on the application, in this case the regeneration of tendon-bone junctions, properties like the degree of fibre orientation, homogeneity of fibre throughout the scaffold and reaction to external mechanical load are of particular importance. Currently, destructive methods, like scanning electron microscopy (SEM), are widely used to determine these properties. In addition to the destruction of the samples, these methods often only allow the investigation of very small sections. In this study, we present two new methods for the fast, non-destructive and contactless characterization of electrospun fibre scaffolds for mTE. These methods are based on Transillumination Imaging (TI) and Mueller Matrix Polarimetry (MMP), utilizing low-power laser sources or LED light sources, respectively, to determine the relative homogeneity (TI) and the degree of fibre orientation (MMP) in electrospun fibre scaffolds.
AB - In order to achieve the high quality required in medical products, reliable characterization methods and quality management systems are necessary. In the field of musculoskeletal Tissue Engineering (mTE), electrospinning is utilized to manufacture fibre scaffolds as implant material. Depending on the application, in this case the regeneration of tendon-bone junctions, properties like the degree of fibre orientation, homogeneity of fibre throughout the scaffold and reaction to external mechanical load are of particular importance. Currently, destructive methods, like scanning electron microscopy (SEM), are widely used to determine these properties. In addition to the destruction of the samples, these methods often only allow the investigation of very small sections. In this study, we present two new methods for the fast, non-destructive and contactless characterization of electrospun fibre scaffolds for mTE. These methods are based on Transillumination Imaging (TI) and Mueller Matrix Polarimetry (MMP), utilizing low-power laser sources or LED light sources, respectively, to determine the relative homogeneity (TI) and the degree of fibre orientation (MMP) in electrospun fibre scaffolds.
KW - electrospinning
KW - fibre alignment
KW - fibre scaffolds
KW - Mueller matrix polarimetry
KW - polycaprolactone
KW - relative scaffold homogeneity
KW - Tissue engineering
KW - transillumination imaging
UR - http://www.scopus.com/inward/record.url?scp=85121865156&partnerID=8YFLogxK
U2 - 10.1515/cdbme-2021-2046
DO - 10.1515/cdbme-2021-2046
M3 - Article
AN - SCOPUS:85121865156
VL - 7
SP - 179
EP - 182
JO - Current Directions in Biomedical Engineering
JF - Current Directions in Biomedical Engineering
IS - 2
ER -