A note on Weyl groups and root lattices

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Externe Organisationen

  • Universität Bielefeld
  • Technische Universität Kaiserslautern
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)469-477
Seitenumfang9
FachzeitschriftArchiv der Mathematik
Jahrgang111
Ausgabenummer5
Frühes Online-Datum14 Sept. 2018
PublikationsstatusVeröffentlicht - Nov. 2018
Extern publiziertJa

Abstract

We follow the dual approach to Coxeter systems and show for Weyl groups that a set of reflections generates the group if and only if the related sets of roots and coroots generate the root and the coroot lattices, respectively. Previously, we have proven if (W, S) is a Coxeter system of finite rank n with set of reflections T and if t 1, … t n∈ T are reflections in W that generate W, then P: = ⟨ t 1, … t n - 1⟩ is a parabolic subgroup of (W, S) of rank n- 1 (Baumeister et al. in J Group Theory 20:103–131, 2017, Theorem 1.5). Here we show if (W, S) is crystallographic as well, then all the reflections t∈ T such that ⟨ P, t⟩ = W form a single orbit under conjugation by P.

ASJC Scopus Sachgebiete

Zitieren

A note on Weyl groups and root lattices. / Wegener, Patrick; Baumeister, Barbara.
in: Archiv der Mathematik, Jahrgang 111, Nr. 5, 11.2018, S. 469-477.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Wegener P, Baumeister B. A note on Weyl groups and root lattices. Archiv der Mathematik. 2018 Nov;111(5):469-477. Epub 2018 Sep 14. doi: 10.1007/s00013-018-1234-5
Wegener, Patrick ; Baumeister, Barbara. / A note on Weyl groups and root lattices. in: Archiv der Mathematik. 2018 ; Jahrgang 111, Nr. 5. S. 469-477.
Download
@article{9e71671505ad40349f9b18bd2bc9e5ef,
title = "A note on Weyl groups and root lattices",
abstract = "We follow the dual approach to Coxeter systems and show for Weyl groups that a set of reflections generates the group if and only if the related sets of roots and coroots generate the root and the coroot lattices, respectively. Previously, we have proven if (W, S) is a Coxeter system of finite rank n with set of reflections T and if t 1, … t n∈ T are reflections in W that generate W, then P: = ⟨ t 1, … t n - 1⟩ is a parabolic subgroup of (W, S) of rank n- 1 (Baumeister et al. in J Group Theory 20:103–131, 2017, Theorem 1.5). Here we show if (W, S) is crystallographic as well, then all the reflections t∈ T such that ⟨ P, t⟩ = W form a single orbit under conjugation by P. ",
keywords = "Dual Coxeter system, Finite crystallographic Coxeter systems, Finite crystallographic root lattices, Generation of dual Coxeter systems, Quasi-Coxeter elements, Weyl group",
author = "Patrick Wegener and Barbara Baumeister",
note = "Publisher Copyright: {\textcopyright} 2018, Springer Nature Switzerland AG.",
year = "2018",
month = nov,
doi = "10.1007/s00013-018-1234-5",
language = "English",
volume = "111",
pages = "469--477",
journal = "Archiv der Mathematik",
issn = "0003-889X",
publisher = "Birkhauser Verlag Basel",
number = "5",

}

Download

TY - JOUR

T1 - A note on Weyl groups and root lattices

AU - Wegener, Patrick

AU - Baumeister, Barbara

N1 - Publisher Copyright: © 2018, Springer Nature Switzerland AG.

PY - 2018/11

Y1 - 2018/11

N2 - We follow the dual approach to Coxeter systems and show for Weyl groups that a set of reflections generates the group if and only if the related sets of roots and coroots generate the root and the coroot lattices, respectively. Previously, we have proven if (W, S) is a Coxeter system of finite rank n with set of reflections T and if t 1, … t n∈ T are reflections in W that generate W, then P: = ⟨ t 1, … t n - 1⟩ is a parabolic subgroup of (W, S) of rank n- 1 (Baumeister et al. in J Group Theory 20:103–131, 2017, Theorem 1.5). Here we show if (W, S) is crystallographic as well, then all the reflections t∈ T such that ⟨ P, t⟩ = W form a single orbit under conjugation by P.

AB - We follow the dual approach to Coxeter systems and show for Weyl groups that a set of reflections generates the group if and only if the related sets of roots and coroots generate the root and the coroot lattices, respectively. Previously, we have proven if (W, S) is a Coxeter system of finite rank n with set of reflections T and if t 1, … t n∈ T are reflections in W that generate W, then P: = ⟨ t 1, … t n - 1⟩ is a parabolic subgroup of (W, S) of rank n- 1 (Baumeister et al. in J Group Theory 20:103–131, 2017, Theorem 1.5). Here we show if (W, S) is crystallographic as well, then all the reflections t∈ T such that ⟨ P, t⟩ = W form a single orbit under conjugation by P.

KW - Dual Coxeter system

KW - Finite crystallographic Coxeter systems

KW - Finite crystallographic root lattices

KW - Generation of dual Coxeter systems

KW - Quasi-Coxeter elements

KW - Weyl group

UR - http://www.scopus.com/inward/record.url?scp=85053527229&partnerID=8YFLogxK

U2 - 10.1007/s00013-018-1234-5

DO - 10.1007/s00013-018-1234-5

M3 - Article

VL - 111

SP - 469

EP - 477

JO - Archiv der Mathematik

JF - Archiv der Mathematik

SN - 0003-889X

IS - 5

ER -

Von denselben Autoren