Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 38-56 |
Seitenumfang | 19 |
Fachzeitschrift | ISPRS Journal of Photogrammetry and Remote Sensing |
Jahrgang | 177 |
Frühes Online-Datum | 13 Mai 2021 |
Publikationsstatus | Veröffentlicht - Juli 2021 |
Abstract
Land use as contained in geospatial databases constitutes an essential input for different applications such as urban management, regional planning and environmental monitoring. In this paper, a hierarchical deep learning framework is proposed to verify the land use information. For this purpose, a two-step strategy is applied. First, given high-resolution aerial images, the land cover information is determined. To achieve this, an encoder-decoder based convolutional neural network (CNN) is proposed. Second, the pixel-wise land cover information along with the aerial images serves as input for another CNN to classify land use. Because the object catalogue of geospatial databases is frequently constructed in a hierarchical manner, we propose a new CNN-based method aiming to predict land use in multiple levels hierarchically and simultaneously. A so called Joint Optimization (JO) is proposed where predictions are made by selecting the hierarchical tuple over all levels which has the maximum joint class scores, providing consistent results across the different levels. The conducted experiments show that the CNN relying on JO outperforms previous results, achieving an overall accuracy up to 92.5%. In addition to the individual experiments on two test sites, we investigate whether data showing different characteristics can improve the results of land cover and land use classification, when processed together. To do so, we combine the two datasets and undertake some additional experiments. The results show that adding more data helps both land cover and land use classification, especially the identification of underrepresented categories, despite their different characteristics.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Atom- und Molekularphysik sowie Optik
- Ingenieurwesen (insg.)
- Ingenieurwesen (sonstige)
- Informatik (insg.)
- Angewandte Informatik
- Erdkunde und Planetologie (insg.)
- Computer in den Geowissenschaften
Ziele für nachhaltige Entwicklung
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: ISPRS Journal of Photogrammetry and Remote Sensing, Jahrgang 177, 07.2021, S. 38-56.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - A hierarchical deep learning framework for the consistent classification of land use objects in geospatial databases
AU - Yang, Chun
AU - Rottensteiner, Franz
AU - Heipke, Christian
N1 - Funding Information: We thank the Landesamt für Geoinformation und Landesvermessung Niedersachsen (LGLN), the Landesamt für Vermessung und Geoinformation Schleswig Holstein (LVermGeo) and the Landesamt für innere Verwaltung Mecklenburg-Vorpommern (LaiV-MV) for providing the test data and for their support of this project.
PY - 2021/7
Y1 - 2021/7
N2 - Land use as contained in geospatial databases constitutes an essential input for different applications such as urban management, regional planning and environmental monitoring. In this paper, a hierarchical deep learning framework is proposed to verify the land use information. For this purpose, a two-step strategy is applied. First, given high-resolution aerial images, the land cover information is determined. To achieve this, an encoder-decoder based convolutional neural network (CNN) is proposed. Second, the pixel-wise land cover information along with the aerial images serves as input for another CNN to classify land use. Because the object catalogue of geospatial databases is frequently constructed in a hierarchical manner, we propose a new CNN-based method aiming to predict land use in multiple levels hierarchically and simultaneously. A so called Joint Optimization (JO) is proposed where predictions are made by selecting the hierarchical tuple over all levels which has the maximum joint class scores, providing consistent results across the different levels. The conducted experiments show that the CNN relying on JO outperforms previous results, achieving an overall accuracy up to 92.5%. In addition to the individual experiments on two test sites, we investigate whether data showing different characteristics can improve the results of land cover and land use classification, when processed together. To do so, we combine the two datasets and undertake some additional experiments. The results show that adding more data helps both land cover and land use classification, especially the identification of underrepresented categories, despite their different characteristics.
AB - Land use as contained in geospatial databases constitutes an essential input for different applications such as urban management, regional planning and environmental monitoring. In this paper, a hierarchical deep learning framework is proposed to verify the land use information. For this purpose, a two-step strategy is applied. First, given high-resolution aerial images, the land cover information is determined. To achieve this, an encoder-decoder based convolutional neural network (CNN) is proposed. Second, the pixel-wise land cover information along with the aerial images serves as input for another CNN to classify land use. Because the object catalogue of geospatial databases is frequently constructed in a hierarchical manner, we propose a new CNN-based method aiming to predict land use in multiple levels hierarchically and simultaneously. A so called Joint Optimization (JO) is proposed where predictions are made by selecting the hierarchical tuple over all levels which has the maximum joint class scores, providing consistent results across the different levels. The conducted experiments show that the CNN relying on JO outperforms previous results, achieving an overall accuracy up to 92.5%. In addition to the individual experiments on two test sites, we investigate whether data showing different characteristics can improve the results of land cover and land use classification, when processed together. To do so, we combine the two datasets and undertake some additional experiments. The results show that adding more data helps both land cover and land use classification, especially the identification of underrepresented categories, despite their different characteristics.
KW - Aerial imagery
KW - CNN
KW - Geospatial database
KW - Hierarchical consistent land use classification
UR - http://www.scopus.com/inward/record.url?scp=85105857134&partnerID=8YFLogxK
U2 - 10.48550/arXiv.2104.06991
DO - 10.48550/arXiv.2104.06991
M3 - Article
AN - SCOPUS:85105857134
VL - 177
SP - 38
EP - 56
JO - ISPRS Journal of Photogrammetry and Remote Sensing
JF - ISPRS Journal of Photogrammetry and Remote Sensing
SN - 0924-2716
ER -