Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1171-1200 |
Seitenumfang | 30 |
Fachzeitschrift | International Journal for Numerical Methods in Engineering |
Jahrgang | 38 |
Ausgabenummer | 7 |
Publikationsstatus | Veröffentlicht - 15 Apr. 1995 |
Extern publiziert | Ja |
Abstract
In this paper a finite element method is developed to treat stability problems in finite elasticity. For this purpose the constitutive equations are formulated in principal stretches which allows a general representation of the derivatives of the strain energy function with respect to the principal stretches. These results can then be used to derive an efficient numerical scheme for the computation of singular points.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Numerische Mathematik
- Ingenieurwesen (insg.)
- Allgemeiner Maschinenbau
- Mathematik (insg.)
- Angewandte Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: International Journal for Numerical Methods in Engineering, Jahrgang 38, Nr. 7, 15.04.1995, S. 1171-1200.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - A finite element method for stability problems in finite elasticity
AU - Reese, S.
AU - Wriggers, Peter
PY - 1995/4/15
Y1 - 1995/4/15
N2 - In this paper a finite element method is developed to treat stability problems in finite elasticity. For this purpose the constitutive equations are formulated in principal stretches which allows a general representation of the derivatives of the strain energy function with respect to the principal stretches. These results can then be used to derive an efficient numerical scheme for the computation of singular points.
AB - In this paper a finite element method is developed to treat stability problems in finite elasticity. For this purpose the constitutive equations are formulated in principal stretches which allows a general representation of the derivatives of the strain energy function with respect to the principal stretches. These results can then be used to derive an efficient numerical scheme for the computation of singular points.
KW - finite element method
KW - hyperelasticity
KW - spectral decomposition
KW - stability problems
UR - http://www.scopus.com/inward/record.url?scp=0029289617&partnerID=8YFLogxK
U2 - 10.1002/nme.1620380706
DO - 10.1002/nme.1620380706
M3 - Article
AN - SCOPUS:0029289617
VL - 38
SP - 1171
EP - 1200
JO - International Journal for Numerical Methods in Engineering
JF - International Journal for Numerical Methods in Engineering
SN - 0029-5981
IS - 7
ER -