Publications
- 2024
- Accepted/In press
Towards Enhancing Predictive Representations using Relational Structure in Reinforcement Learning
Mohan, A. & Lindauer, M., 30 Sept 2024, (Accepted/In press) The 17th European Workshop on Reinforcement Learning (EWRL 2024).Research output: Chapter in book/report/conference proceeding › Conference abstract › Research › peer review
- Published
AMLTK: A Modular AutoML Toolkit in Python
Bergman, E., Feurer, M., Bahram, A., Rezaei, A., Purucker, L., Segel, S., Lindauer, M. & Eggensperger, K., 14 Aug 2024, In: The Journal of Open Source Software. 9, 100, 4 p., 6367.Research output: Contribution to journal › Article › Research › peer review
- Accepted/In press
Hyperparameter Importance Analysis for Multi-Objective AutoML
Theodorakopoulos, D., Stahl, F. & Lindauer, M., 4 Jul 2024, (Accepted/In press) Proceedings of the european conference on AI (ECAI).Research output: Chapter in book/report/conference proceeding › Conference contribution › Research › peer review
- Published
AutoML in Heavily Constrained Applications
Neutatz, F., Lindauer, M. & Abedjan, Z., Jul 2024, In: VLDB Journal. 33, p. 957–979Research output: Contribution to journal › Article › Research › peer review
- E-pub ahead of print
Optimizing Time Series Forecasting Architectures: A Hierarchical Neural Architecture Search Approach
Deng, D. & Lindauer, M., 10 Jun 2024, (E-pub ahead of print) (ArXiv).Research output: Working paper/Preprint › Preprint
- Published
Verfahren zum Trainieren eines Algorithmus des maschinellen Lernens durch ein bestärkendes Lernverfahren
Eimer, T., Hutter, F., Lindauer, M. & Biedenkapp, A., 4 Apr 2024, IPC No. G06N20/00, Patent No. DE102022210480A1, 4 Oct 2022, Priority date 4 Oct 2022, Priority No. DE202210210480AResearch output: Patent
- E-pub ahead of print
Towards Leveraging AutoML for Sustainable Deep Learning: A Multi-Objective HPO Approach on Deep Shift Neural Networks
Hennig, L., Tornede, T. & Lindauer, M., 2 Apr 2024, (E-pub ahead of print) 5th Workshop on practical ML for limited/low resource settings.Research output: Chapter in book/report/conference proceeding › Conference contribution › Research › peer review
- Accepted/In press
auto-sktime: Automated Time Series Forecasting
Zöller, M., Lindauer, M. & Huber, M., Apr 2024, (Accepted/In press) Proceedings of the 18TH Learning and Intelligent Optimization Conference (LION).Research output: Chapter in book/report/conference proceeding › Conference contribution › Research › peer review
- E-pub ahead of print
Structure in Deep Reinforcement Learning: A Survey and Open Problems
Mohan, A., Zhang, A. & Lindauer, M., Apr 2024, (E-pub ahead of print) In: Journal of Artificial Intelligence Research.Research output: Contribution to journal › Article › Research › peer review
- Published
Interactive Hyperparameter Optimization in Multi-Objective Problems via Preference Learning
Giovanelli, J., Tornede, A., Tornede, T. & Lindauer, M., 24 Mar 2024, Proceedings of the 38th conference on AAAI. Wooldridge, M., Dy, J. & Natarajan, S. (eds.). p. 12172-12180 9 p. (Proceedings of the AAAI Conference on Artificial Intelligence; vol. 38, no. 11).Research output: Chapter in book/report/conference proceeding › Conference contribution › Research › peer review
- E-pub ahead of print
AutoML in the Age of Large Language Models: Current Challenges, Future Opportunities and Risks
Tornede, A., Deng, D., Eimer, T., Giovanelli, J., Mohan, A., Ruhkopf, T., Segel, S., Theodorakopoulos, D., Tornede, T., Wachsmuth, H. & Lindauer, M., 9 Feb 2024, (E-pub ahead of print) In: Transactions on Machine Learning Research.Research output: Contribution to journal › Article › Research › peer review
- Published
ARLBench: Flexible and Efficient Benchmarking for Hyperparameter Optimization in Reinforcement Learning
Becktepe, J., Dierkes, J., Benjamins, C., Mohan, A., Salinas, D., Rajan, R., Hutter, F., Hoos, H., Lindauer, M. & Eimer, T., 2024, 17th European Workshop on Reinforcement Learning (EWRL 2024).Research output: Chapter in book/report/conference proceeding › Conference contribution › Research › peer review
- E-pub ahead of print
Instance Selection for Dynamic Algorithm Configuration with Reinforcement Learning: Improving Generalization
Benjamins, C., Cenikj, G., Nikolikj, A., Mohan, A., Eftimov, T. & Lindauer, M., 2024, (E-pub ahead of print) Genetic and Evolutionary Computation Conference (GECCO).Research output: Chapter in book/report/conference proceeding › Conference contribution › Research › peer review
- E-pub ahead of print
Position Paper: A Call to Action for a Human-Centered AutoML Paradigm
Lindauer, M., Karl, F., Klier, A., Moosbauer, J., Tornede, A., Müller, A., Hutter, F., Feurer, M. & Bischl, B., 2024, (E-pub ahead of print) Proceedings of the international conference on machine learning.Research output: Chapter in book/report/conference proceeding › Conference contribution › Research › peer review
- 2023
- Published
AutoML: advanced tool for mining multivariate plant traits
Shoaib, M., Kotthoff, L., Lindauer, M. & Kant, S., Dec 2023, In: Trends in Plant Science. 28, 12, p. 1451-1452 2 p.Research output: Contribution to journal › Article › Research › peer review
- Accepted/In press
A Patterns Framework for Incorporating Structure in Deep Reinforcement Learning
Mohan, A., Zhang, A. & Lindauer, M., 17 Sept 2023, (Accepted/In press) The 16th European Workshop on Reinforcement Learning (EWRL 2023).Research output: Chapter in book/report/conference proceeding › Conference abstract › Research › peer review
- Accepted/In press
Extended Abstract: AutoRL Hyperparameter Landscapes
Mohan, A., Benjamins, C., Wienecke, K., Dockhorn, A. & Lindauer, M., 15 Sept 2023, (Accepted/In press) The 16th European Workshop on Reinforcement Learning (EWRL 2023).Research output: Chapter in book/report/conference proceeding › Conference contribution › Research › peer review
- E-pub ahead of print
PriorBand: Practical Hyperparameter Optimization in the Age of Deep Learning
Mallik, N., Bergman, E., Hvarfner, C., Stoll, D., Janowski, M., Lindauer, M., Nardi, L. & Hutter, F., Sept 2023, (E-pub ahead of print) Proceedings of the international Conference on Neural Information Processing Systems (NeurIPS).Research output: Chapter in book/report/conference proceeding › Conference contribution › Research › peer review
- Published
Hyperparameters in Reinforcement Learning and How to Tune Them
Eimer, T., Lindauer, M. & Raileanu, R., 23 Jul 2023, ICML'23: Proceedings of the 40th International Conference on Machine Learning. p. 9104–9149 366Research output: Chapter in book/report/conference proceeding › Conference contribution › Research › peer review
- E-pub ahead of print
AutoRL Hyperparameter Landscapes
Mohan, A., Benjamins, C., Wienecke, K., Dockhorn, A. & Lindauer, M., 20 Jul 2023, (E-pub ahead of print) Second International Conference on Automated Machine Learning.Research output: Chapter in book/report/conference proceeding › Conference contribution › Research