Profile information
View graph of relations

Publications

  1. 2024
  2. Accepted/In press

    Towards Enhancing Predictive Representations using Relational Structure in Reinforcement Learning

    Mohan, A. & Lindauer, M., 30 Sept 2024, (Accepted/In press) The 17th European Workshop on Reinforcement Learning (EWRL 2024).

    Research output: Chapter in book/report/conference proceedingConference abstractResearchpeer review

  3. Published

    AMLTK: A Modular AutoML Toolkit in Python

    Bergman, E., Feurer, M., Bahram, A., Rezaei, A., Purucker, L., Segel, S., Lindauer, M. & Eggensperger, K., 14 Aug 2024, In: The Journal of Open Source Software. 9, 100, 4 p., 6367.

    Research output: Contribution to journalArticleResearchpeer review

  4. Accepted/In press

    Hyperparameter Importance Analysis for Multi-Objective AutoML

    Theodorakopoulos, D., Stahl, F. & Lindauer, M., 4 Jul 2024, (Accepted/In press) Proceedings of the european conference on AI (ECAI).

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  5. Published

    AutoML in Heavily Constrained Applications

    Neutatz, F., Lindauer, M. & Abedjan, Z., Jul 2024, In: VLDB Journal. 33, p. 957–979

    Research output: Contribution to journalArticleResearchpeer review

  6. E-pub ahead of print

    Optimizing Time Series Forecasting Architectures: A Hierarchical Neural Architecture Search Approach

    Deng, D. & Lindauer, M., 10 Jun 2024, (E-pub ahead of print) (ArXiv).

    Research output: Working paper/PreprintPreprint

  7. Published

    Verfahren zum Trainieren eines Algorithmus des maschinellen Lernens durch ein bestärkendes Lernverfahren

    Eimer, T., Hutter, F., Lindauer, M. & Biedenkapp, A., 4 Apr 2024, IPC No. G06N20/00, Patent No. DE102022210480A1, 4 Oct 2022, Priority date 4 Oct 2022, Priority No. DE202210210480A

    Research output: Patent

  8. E-pub ahead of print

    Towards Leveraging AutoML for Sustainable Deep Learning: A Multi-Objective HPO Approach on Deep Shift Neural Networks

    Hennig, L., Tornede, T. & Lindauer, M., 2 Apr 2024, (E-pub ahead of print) 5th Workshop on practical ML for limited/low resource settings.

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  9. Accepted/In press

    auto-sktime: Automated Time Series Forecasting

    Zöller, M., Lindauer, M. & Huber, M., Apr 2024, (Accepted/In press) Proceedings of the 18TH Learning and Intelligent Optimization Conference (LION).

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  10. E-pub ahead of print

    Structure in Deep Reinforcement Learning: A Survey and Open Problems

    Mohan, A., Zhang, A. & Lindauer, M., Apr 2024, (E-pub ahead of print) In: Journal of Artificial Intelligence Research.

    Research output: Contribution to journalArticleResearchpeer review

  11. Published

    Interactive Hyperparameter Optimization in Multi-Objective Problems via Preference Learning

    Giovanelli, J., Tornede, A., Tornede, T. & Lindauer, M., 24 Mar 2024, Proceedings of the 38th conference on AAAI. Wooldridge, M., Dy, J. & Natarajan, S. (eds.). p. 12172-12180 9 p. (Proceedings of the AAAI Conference on Artificial Intelligence; vol. 38, no. 11).

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  12. E-pub ahead of print

    AutoML in the Age of Large Language Models: Current Challenges, Future Opportunities and Risks

    Tornede, A., Deng, D., Eimer, T., Giovanelli, J., Mohan, A., Ruhkopf, T., Segel, S., Theodorakopoulos, D., Tornede, T., Wachsmuth, H. & Lindauer, M., 9 Feb 2024, (E-pub ahead of print) In: Transactions on Machine Learning Research.

    Research output: Contribution to journalArticleResearchpeer review

  13. Published

    ARLBench: Flexible and Efficient Benchmarking for Hyperparameter Optimization in Reinforcement Learning

    Becktepe, J., Dierkes, J., Benjamins, C., Mohan, A., Salinas, D., Rajan, R., Hutter, F., Hoos, H., Lindauer, M. & Eimer, T., 2024, 17th European Workshop on Reinforcement Learning (EWRL 2024).

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  14. E-pub ahead of print

    Instance Selection for Dynamic Algorithm Configuration with Reinforcement Learning: Improving Generalization

    Benjamins, C., Cenikj, G., Nikolikj, A., Mohan, A., Eftimov, T. & Lindauer, M., 2024, (E-pub ahead of print) Genetic and Evolutionary Computation Conference (GECCO).

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  15. E-pub ahead of print

    Position Paper: A Call to Action for a Human-Centered AutoML Paradigm

    Lindauer, M., Karl, F., Klier, A., Moosbauer, J., Tornede, A., Müller, A., Hutter, F., Feurer, M. & Bischl, B., 2024, (E-pub ahead of print) Proceedings of the international conference on machine learning.

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  16. 2023
  17. Published

    AutoML: advanced tool for mining multivariate plant traits

    Shoaib, M., Kotthoff, L., Lindauer, M. & Kant, S., Dec 2023, In: Trends in Plant Science. 28, 12, p. 1451-1452 2 p.

    Research output: Contribution to journalArticleResearchpeer review

  18. Accepted/In press

    A Patterns Framework for Incorporating Structure in Deep Reinforcement Learning

    Mohan, A., Zhang, A. & Lindauer, M., 17 Sept 2023, (Accepted/In press) The 16th European Workshop on Reinforcement Learning (EWRL 2023).

    Research output: Chapter in book/report/conference proceedingConference abstractResearchpeer review

  19. Accepted/In press

    Extended Abstract: AutoRL Hyperparameter Landscapes

    Mohan, A., Benjamins, C., Wienecke, K., Dockhorn, A. & Lindauer, M., 15 Sept 2023, (Accepted/In press) The 16th European Workshop on Reinforcement Learning (EWRL 2023).

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  20. E-pub ahead of print

    PriorBand: Practical Hyperparameter Optimization in the Age of Deep Learning

    Mallik, N., Bergman, E., Hvarfner, C., Stoll, D., Janowski, M., Lindauer, M., Nardi, L. & Hutter, F., Sept 2023, (E-pub ahead of print) Proceedings of the international Conference on Neural Information Processing Systems (NeurIPS).

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  21. Published

    Hyperparameters in Reinforcement Learning and How to Tune Them

    Eimer, T., Lindauer, M. & Raileanu, R., 23 Jul 2023, ICML'23: Proceedings of the 40th International Conference on Machine Learning. p. 9104–9149 366

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  22. E-pub ahead of print

    AutoRL Hyperparameter Landscapes

    Mohan, A., Benjamins, C., Wienecke, K., Dockhorn, A. & Lindauer, M., 20 Jul 2023, (E-pub ahead of print) Second International Conference on Automated Machine Learning.

    Research output: Chapter in book/report/conference proceedingConference contributionResearch

Previous 1 2 3 4 5 6 7 Next