Using Stormwater in a Sponge City as a New Wing of Urban Water Supply: A Case Study

Research output: Contribution to journalArticleResearchpeer review

Authors

External Research Organisations

  • Technische Universität Braunschweig
View graph of relations

Details

Original languageEnglish
Article number1893
JournalWater
Volume15
Issue number10
Publication statusPublished - 17 May 2023

Abstract

Rapid and even disruptive innovations are needed to make cities fit for the future. The particular challenge will be to transform existing urban spaces in order to increase climate resilience. Along these lines, rainwater harvesting has taken place insufficiently to date, even when Sponge City concepts are implemented. Thus, the concept presented here addresses existing urban neighborhoods and proposes to collect rainwater from nearby rooftops and treat it in decentral treatment units called “City Water Hubs” (CWH) equipped with modular coupled low-energy technologies to produce various customized “City Water” qualities, and store it until it can be used or distributed. A feasibility study with a focus on the campus area at the main building of the Leibniz University of Hannover, the determined rainwater qualities, and the results from investigations with two laboratory test plants provided the basis for the technical design of the pursued concept. The feasibility study showed how sufficient rainwater for irrigation purposes can be made available for the listed large university park even under extreme dry and heat wave conditions. If large portions of the roof area (11,737 m 2) of the university’s main building were activated, even in a dry year with only 49.8% of the average precipitation, only 19.8% of the harvested stormwater would be needed for irrigation. The rainwater samples showed TSS concentrations of up to 7.54 mg/L, COD of up to 58.5 mg/L, and NH 4 of up to 2.21 mg/L, which was in line with data reported in the literature. The treatment technologies used for the two pilot plants are proven approaches for stormwater treatment and were composed as follows: (1) gravity-driven membrane filtration (GDM) and (2) slow sand filter with integrated activated carbon (AC) layer. The treatment with both (1) and (2) clearly improved the rainwater quality. The GDM reduced turbidity by 90.4% and the Sand/AC filter by 20.4%. With regard to COD, the studies for GDM did not show a clear elimination trend; the Sand/AC filter reduced the COD by 77%. Taken together, decentralized low-energy rainwater treatment can reliably provide quality-assured City Water for any specific use. Regarding the treatment design, GDM is preferable and can be better operated with downstream UV disinfection, which might be needed to reduce the pathogenic load, e.g., for local heat control measures. The research steps presented here will pioneer the development of a city-wide rainwater harvesting infrastructure on the way of establishing stormwater as a resource for a new wing of urban water supply. The presented findings will now result in the implementation of a full-scale CHW on the campus to ensure long-term irrigation of the listed park, relieving the public drinking water supply.

Keywords

    city water hub, rainwater harvesting, sponge city, sustainable university, water supply

ASJC Scopus subject areas

Sustainable Development Goals

Cite this

Using Stormwater in a Sponge City as a New Wing of Urban Water Supply: A Case Study. / Köster, Stephan; Hadler, Greta; Opitz, Lea et al.
In: Water, Vol. 15, No. 10, 1893, 17.05.2023.

Research output: Contribution to journalArticleResearchpeer review

Köster S, Hadler G, Opitz L, Thoms AK. Using Stormwater in a Sponge City as a New Wing of Urban Water Supply: A Case Study. Water. 2023 May 17;15(10):1893. doi: https://doi.org/10.3390/w15101893
Köster, Stephan ; Hadler, Greta ; Opitz, Lea et al. / Using Stormwater in a Sponge City as a New Wing of Urban Water Supply : A Case Study. In: Water. 2023 ; Vol. 15, No. 10.
Download
@article{831f0213fb6748a2a0f28e6fbbb2ee24,
title = "Using Stormwater in a Sponge City as a New Wing of Urban Water Supply: A Case Study",
abstract = "Rapid and even disruptive innovations are needed to make cities fit for the future. The particular challenge will be to transform existing urban spaces in order to increase climate resilience. Along these lines, rainwater harvesting has taken place insufficiently to date, even when Sponge City concepts are implemented. Thus, the concept presented here addresses existing urban neighborhoods and proposes to collect rainwater from nearby rooftops and treat it in decentral treatment units called “City Water Hubs” (CWH) equipped with modular coupled low-energy technologies to produce various customized “City Water” qualities, and store it until it can be used or distributed. A feasibility study with a focus on the campus area at the main building of the Leibniz University of Hannover, the determined rainwater qualities, and the results from investigations with two laboratory test plants provided the basis for the technical design of the pursued concept. The feasibility study showed how sufficient rainwater for irrigation purposes can be made available for the listed large university park even under extreme dry and heat wave conditions. If large portions of the roof area (11,737 m 2) of the university{\textquoteright}s main building were activated, even in a dry year with only 49.8% of the average precipitation, only 19.8% of the harvested stormwater would be needed for irrigation. The rainwater samples showed TSS concentrations of up to 7.54 mg/L, COD of up to 58.5 mg/L, and NH 4 of up to 2.21 mg/L, which was in line with data reported in the literature. The treatment technologies used for the two pilot plants are proven approaches for stormwater treatment and were composed as follows: (1) gravity-driven membrane filtration (GDM) and (2) slow sand filter with integrated activated carbon (AC) layer. The treatment with both (1) and (2) clearly improved the rainwater quality. The GDM reduced turbidity by 90.4% and the Sand/AC filter by 20.4%. With regard to COD, the studies for GDM did not show a clear elimination trend; the Sand/AC filter reduced the COD by 77%. Taken together, decentralized low-energy rainwater treatment can reliably provide quality-assured City Water for any specific use. Regarding the treatment design, GDM is preferable and can be better operated with downstream UV disinfection, which might be needed to reduce the pathogenic load, e.g., for local heat control measures. The research steps presented here will pioneer the development of a city-wide rainwater harvesting infrastructure on the way of establishing stormwater as a resource for a new wing of urban water supply. The presented findings will now result in the implementation of a full-scale CHW on the campus to ensure long-term irrigation of the listed park, relieving the public drinking water supply.",
keywords = "city water hub, rainwater harvesting, sponge city, sustainable university, water supply",
author = "Stephan K{\"o}ster and Greta Hadler and Lea Opitz and Thoms, {Anna Katharina}",
note = "The authors would like to thank the responsible persons at Leibniz Universit{\"a}t Hannover for making the investigations described here possible. Thanks are due, in particular, for the provision of planning data, real estate, and building descriptions, and for their support in carrying out the practical investigations described here. This research was funded by the Federal Ministry of Education and Research (BMBF), Germany, in the frame of grant numbers 02WCL1459A, 033W105A, and 01DO17031.",
year = "2023",
month = may,
day = "17",
doi = "https://doi.org/10.3390/w15101893",
language = "English",
volume = "15",
journal = "Water",
issn = "2073-4441",
publisher = "Multidisciplinary Digital Publishing Institute",
number = "10",

}

Download

TY - JOUR

T1 - Using Stormwater in a Sponge City as a New Wing of Urban Water Supply

T2 - A Case Study

AU - Köster, Stephan

AU - Hadler, Greta

AU - Opitz, Lea

AU - Thoms, Anna Katharina

N1 - The authors would like to thank the responsible persons at Leibniz Universität Hannover for making the investigations described here possible. Thanks are due, in particular, for the provision of planning data, real estate, and building descriptions, and for their support in carrying out the practical investigations described here. This research was funded by the Federal Ministry of Education and Research (BMBF), Germany, in the frame of grant numbers 02WCL1459A, 033W105A, and 01DO17031.

PY - 2023/5/17

Y1 - 2023/5/17

N2 - Rapid and even disruptive innovations are needed to make cities fit for the future. The particular challenge will be to transform existing urban spaces in order to increase climate resilience. Along these lines, rainwater harvesting has taken place insufficiently to date, even when Sponge City concepts are implemented. Thus, the concept presented here addresses existing urban neighborhoods and proposes to collect rainwater from nearby rooftops and treat it in decentral treatment units called “City Water Hubs” (CWH) equipped with modular coupled low-energy technologies to produce various customized “City Water” qualities, and store it until it can be used or distributed. A feasibility study with a focus on the campus area at the main building of the Leibniz University of Hannover, the determined rainwater qualities, and the results from investigations with two laboratory test plants provided the basis for the technical design of the pursued concept. The feasibility study showed how sufficient rainwater for irrigation purposes can be made available for the listed large university park even under extreme dry and heat wave conditions. If large portions of the roof area (11,737 m 2) of the university’s main building were activated, even in a dry year with only 49.8% of the average precipitation, only 19.8% of the harvested stormwater would be needed for irrigation. The rainwater samples showed TSS concentrations of up to 7.54 mg/L, COD of up to 58.5 mg/L, and NH 4 of up to 2.21 mg/L, which was in line with data reported in the literature. The treatment technologies used for the two pilot plants are proven approaches for stormwater treatment and were composed as follows: (1) gravity-driven membrane filtration (GDM) and (2) slow sand filter with integrated activated carbon (AC) layer. The treatment with both (1) and (2) clearly improved the rainwater quality. The GDM reduced turbidity by 90.4% and the Sand/AC filter by 20.4%. With regard to COD, the studies for GDM did not show a clear elimination trend; the Sand/AC filter reduced the COD by 77%. Taken together, decentralized low-energy rainwater treatment can reliably provide quality-assured City Water for any specific use. Regarding the treatment design, GDM is preferable and can be better operated with downstream UV disinfection, which might be needed to reduce the pathogenic load, e.g., for local heat control measures. The research steps presented here will pioneer the development of a city-wide rainwater harvesting infrastructure on the way of establishing stormwater as a resource for a new wing of urban water supply. The presented findings will now result in the implementation of a full-scale CHW on the campus to ensure long-term irrigation of the listed park, relieving the public drinking water supply.

AB - Rapid and even disruptive innovations are needed to make cities fit for the future. The particular challenge will be to transform existing urban spaces in order to increase climate resilience. Along these lines, rainwater harvesting has taken place insufficiently to date, even when Sponge City concepts are implemented. Thus, the concept presented here addresses existing urban neighborhoods and proposes to collect rainwater from nearby rooftops and treat it in decentral treatment units called “City Water Hubs” (CWH) equipped with modular coupled low-energy technologies to produce various customized “City Water” qualities, and store it until it can be used or distributed. A feasibility study with a focus on the campus area at the main building of the Leibniz University of Hannover, the determined rainwater qualities, and the results from investigations with two laboratory test plants provided the basis for the technical design of the pursued concept. The feasibility study showed how sufficient rainwater for irrigation purposes can be made available for the listed large university park even under extreme dry and heat wave conditions. If large portions of the roof area (11,737 m 2) of the university’s main building were activated, even in a dry year with only 49.8% of the average precipitation, only 19.8% of the harvested stormwater would be needed for irrigation. The rainwater samples showed TSS concentrations of up to 7.54 mg/L, COD of up to 58.5 mg/L, and NH 4 of up to 2.21 mg/L, which was in line with data reported in the literature. The treatment technologies used for the two pilot plants are proven approaches for stormwater treatment and were composed as follows: (1) gravity-driven membrane filtration (GDM) and (2) slow sand filter with integrated activated carbon (AC) layer. The treatment with both (1) and (2) clearly improved the rainwater quality. The GDM reduced turbidity by 90.4% and the Sand/AC filter by 20.4%. With regard to COD, the studies for GDM did not show a clear elimination trend; the Sand/AC filter reduced the COD by 77%. Taken together, decentralized low-energy rainwater treatment can reliably provide quality-assured City Water for any specific use. Regarding the treatment design, GDM is preferable and can be better operated with downstream UV disinfection, which might be needed to reduce the pathogenic load, e.g., for local heat control measures. The research steps presented here will pioneer the development of a city-wide rainwater harvesting infrastructure on the way of establishing stormwater as a resource for a new wing of urban water supply. The presented findings will now result in the implementation of a full-scale CHW on the campus to ensure long-term irrigation of the listed park, relieving the public drinking water supply.

KW - city water hub

KW - rainwater harvesting

KW - sponge city

KW - sustainable university

KW - water supply

UR - http://www.scopus.com/inward/record.url?scp=85160620095&partnerID=8YFLogxK

U2 - https://doi.org/10.3390/w15101893

DO - https://doi.org/10.3390/w15101893

M3 - Article

VL - 15

JO - Water

JF - Water

SN - 2073-4441

IS - 10

M1 - 1893

ER -