Details
Original language | English |
---|---|
Title of host publication | Proceedings of the 22nd International ESAFORM Conference on Material Forming, ESAFORM 2019 |
Publisher | American Institute of Physics Inc. |
ISBN (electronic) | 9780735418479 |
Publication status | Published - 2 Jul 2019 |
Event | 22nd International ESAFORM Conference on Material Forming, ESAFORM 2019 - Vitoria-Gasteiz, Spain Duration: 8 May 2019 → 10 May 2019 |
Publication series
Name | AIP Conference Proceedings |
---|---|
Volume | 2113 |
ISSN (Print) | 0094-243X |
ISSN (electronic) | 1551-7616 |
Abstract
Driven by the demand for resource efficiency, increased reliability, and a need for higher performance, rolling bearings offer optimisation potential with regard to component design and manufacturing processes due to their frequent use in mechanical engineering. Tailored forming technology enables mixed metal compounds to be functionalised in single components in order to partially meet the above-mentioned requirements better than conventional mono-material parts. For this purpose, a semi-finished aluminium-steel workpiece is first manufactured by co-extrusion, then formed subsequently, heat-treated, and finally machined. This hybrid product serves as a substitute for the outer ring of an angular contact ball bearing, providing optimised characteristics with regard to component weight and operational behavior by using locally adapted material properties. Here, the base material consists of aluminium, while the tribological loaded contact zone (ball - raceway) consists of a fatigue resistant steel. In order to estimate the application potential and possible limits of this technology, theoretical investigations on the fatigue behavior are presented in this paper. A finite element simulation solves the contact problem between rolling element and tailored forming component in order to determine the resulting component stresses due to an external load numerically. In post-processing, these stresses are inserted to a fatigue life model for rolling contacts according to Ioannides and Harris. It can be shown, that manufacturing parameters, which are particularly determined by the machining process, such as residual stress conditions and radius ratios in contact (osculation), determine the fatigue life of the hybrid component under optimal lubrication conditions. Furthermore, the ratio of steel to aluminium has a high sensitivity to the fatigue life, whereby, depending bearing load, a high strength coaxial layer with a height of 3 mm steel already possesses 90% the performance of a solid steel component.
ASJC Scopus subject areas
- Physics and Astronomy(all)
- General Physics and Astronomy
Sustainable Development Goals
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
Proceedings of the 22nd International ESAFORM Conference on Material Forming, ESAFORM 2019. American Institute of Physics Inc., 2019. 040020 (AIP Conference Proceedings; Vol. 2113).
Research output: Chapter in book/report/conference proceeding › Conference contribution › Research › peer review
}
TY - GEN
T1 - Theoretical investigations on the fatigue behavior of a tailored forming steel-aluminium bearing component
AU - Coors, Timm
AU - Hwang, Jae Il
AU - Pape, Florian
AU - Poll, Gerhard
N1 - Funding Information: The results presented in this paper were obtained within the Collaborative Research Centre 1153 “Process chain to produce hybrid high performance components by Tailored Forming” in the subproject C3. The authors would like to thank the German Research Foundation (DFG) for the financial and organisational support of this project.
PY - 2019/7/2
Y1 - 2019/7/2
N2 - Driven by the demand for resource efficiency, increased reliability, and a need for higher performance, rolling bearings offer optimisation potential with regard to component design and manufacturing processes due to their frequent use in mechanical engineering. Tailored forming technology enables mixed metal compounds to be functionalised in single components in order to partially meet the above-mentioned requirements better than conventional mono-material parts. For this purpose, a semi-finished aluminium-steel workpiece is first manufactured by co-extrusion, then formed subsequently, heat-treated, and finally machined. This hybrid product serves as a substitute for the outer ring of an angular contact ball bearing, providing optimised characteristics with regard to component weight and operational behavior by using locally adapted material properties. Here, the base material consists of aluminium, while the tribological loaded contact zone (ball - raceway) consists of a fatigue resistant steel. In order to estimate the application potential and possible limits of this technology, theoretical investigations on the fatigue behavior are presented in this paper. A finite element simulation solves the contact problem between rolling element and tailored forming component in order to determine the resulting component stresses due to an external load numerically. In post-processing, these stresses are inserted to a fatigue life model for rolling contacts according to Ioannides and Harris. It can be shown, that manufacturing parameters, which are particularly determined by the machining process, such as residual stress conditions and radius ratios in contact (osculation), determine the fatigue life of the hybrid component under optimal lubrication conditions. Furthermore, the ratio of steel to aluminium has a high sensitivity to the fatigue life, whereby, depending bearing load, a high strength coaxial layer with a height of 3 mm steel already possesses 90% the performance of a solid steel component.
AB - Driven by the demand for resource efficiency, increased reliability, and a need for higher performance, rolling bearings offer optimisation potential with regard to component design and manufacturing processes due to their frequent use in mechanical engineering. Tailored forming technology enables mixed metal compounds to be functionalised in single components in order to partially meet the above-mentioned requirements better than conventional mono-material parts. For this purpose, a semi-finished aluminium-steel workpiece is first manufactured by co-extrusion, then formed subsequently, heat-treated, and finally machined. This hybrid product serves as a substitute for the outer ring of an angular contact ball bearing, providing optimised characteristics with regard to component weight and operational behavior by using locally adapted material properties. Here, the base material consists of aluminium, while the tribological loaded contact zone (ball - raceway) consists of a fatigue resistant steel. In order to estimate the application potential and possible limits of this technology, theoretical investigations on the fatigue behavior are presented in this paper. A finite element simulation solves the contact problem between rolling element and tailored forming component in order to determine the resulting component stresses due to an external load numerically. In post-processing, these stresses are inserted to a fatigue life model for rolling contacts according to Ioannides and Harris. It can be shown, that manufacturing parameters, which are particularly determined by the machining process, such as residual stress conditions and radius ratios in contact (osculation), determine the fatigue life of the hybrid component under optimal lubrication conditions. Furthermore, the ratio of steel to aluminium has a high sensitivity to the fatigue life, whereby, depending bearing load, a high strength coaxial layer with a height of 3 mm steel already possesses 90% the performance of a solid steel component.
UR - http://www.scopus.com/inward/record.url?scp=85068837541&partnerID=8YFLogxK
U2 - 10.1063/1.5112554
DO - 10.1063/1.5112554
M3 - Conference contribution
AN - SCOPUS:85068837541
T3 - AIP Conference Proceedings
BT - Proceedings of the 22nd International ESAFORM Conference on Material Forming, ESAFORM 2019
PB - American Institute of Physics Inc.
T2 - 22nd International ESAFORM Conference on Material Forming, ESAFORM 2019
Y2 - 8 May 2019 through 10 May 2019
ER -