The Kuga-Satake construction under degeneration

Research output: Contribution to journalArticleResearchpeer review

Authors

  • Stefan Schreieder
  • Andrey Soldatenkov

External Research Organisations

  • Ludwig-Maximilians-Universität München (LMU)
  • Humboldt-Universität zu Berlin (HU Berlin)
View graph of relations

Details

Original languageEnglish
Pages (from-to)2165-2182
Number of pages18
JournalJournal of the Institute of Mathematics of Jussieu
Volume19
Issue number6
Publication statusPublished - 1 Nov 2020
Externally publishedYes

Abstract

We extend the Kuga-Satake construction to the case of limit mixed Hodge structures of K3 type. We use this to study the geometry and Hodge theory of degenerations of Kuga-Satake abelian varieties, associated to polarized variations of K3 type Hodge structures over the punctured disc.

Keywords

    abelian variety, Hodge structure, K3 surface, limit mixed Hodge structure, 2010 Mathematics subject classification: 14D06 14D07 14D05

ASJC Scopus subject areas

Cite this

The Kuga-Satake construction under degeneration. / Schreieder, Stefan; Soldatenkov, Andrey.
In: Journal of the Institute of Mathematics of Jussieu, Vol. 19, No. 6, 01.11.2020, p. 2165-2182.

Research output: Contribution to journalArticleResearchpeer review

Schreieder S, Soldatenkov A. The Kuga-Satake construction under degeneration. Journal of the Institute of Mathematics of Jussieu. 2020 Nov 1;19(6):2165-2182. doi: 10.1017/S1474748019000239
Schreieder, Stefan ; Soldatenkov, Andrey. / The Kuga-Satake construction under degeneration. In: Journal of the Institute of Mathematics of Jussieu. 2020 ; Vol. 19, No. 6. pp. 2165-2182.
Download
@article{07d1f1095e74430a9a363e6603f987c6,
title = "The Kuga-Satake construction under degeneration",
abstract = "We extend the Kuga-Satake construction to the case of limit mixed Hodge structures of K3 type. We use this to study the geometry and Hodge theory of degenerations of Kuga-Satake abelian varieties, associated to polarized variations of K3 type Hodge structures over the punctured disc.",
keywords = "abelian variety, Hodge structure, K3 surface, limit mixed Hodge structure, 2010 Mathematics subject classification: 14D06 14D07 14D05",
author = "Stefan Schreieder and Andrey Soldatenkov",
note = "Funding information: The authors are supported by the SFB/TR 45 {\textquoteleft}Periods, Varieties{\textquoteright} of the DFG (German Research Foundation).",
year = "2020",
month = nov,
day = "1",
doi = "10.1017/S1474748019000239",
language = "English",
volume = "19",
pages = "2165--2182",
journal = "Journal of the Institute of Mathematics of Jussieu",
issn = "1474-7480",
publisher = "Cambridge University Press",
number = "6",

}

Download

TY - JOUR

T1 - The Kuga-Satake construction under degeneration

AU - Schreieder, Stefan

AU - Soldatenkov, Andrey

N1 - Funding information: The authors are supported by the SFB/TR 45 ‘Periods, Varieties’ of the DFG (German Research Foundation).

PY - 2020/11/1

Y1 - 2020/11/1

N2 - We extend the Kuga-Satake construction to the case of limit mixed Hodge structures of K3 type. We use this to study the geometry and Hodge theory of degenerations of Kuga-Satake abelian varieties, associated to polarized variations of K3 type Hodge structures over the punctured disc.

AB - We extend the Kuga-Satake construction to the case of limit mixed Hodge structures of K3 type. We use this to study the geometry and Hodge theory of degenerations of Kuga-Satake abelian varieties, associated to polarized variations of K3 type Hodge structures over the punctured disc.

KW - abelian variety

KW - Hodge structure

KW - K3 surface

KW - limit mixed Hodge structure

KW - 2010 Mathematics subject classification: 14D06 14D07 14D05

UR - http://www.scopus.com/inward/record.url?scp=85065862478&partnerID=8YFLogxK

U2 - 10.1017/S1474748019000239

DO - 10.1017/S1474748019000239

M3 - Article

AN - SCOPUS:85065862478

VL - 19

SP - 2165

EP - 2182

JO - Journal of the Institute of Mathematics of Jussieu

JF - Journal of the Institute of Mathematics of Jussieu

SN - 1474-7480

IS - 6

ER -