## Details

Original language | Undefined/Unknown |
---|---|

Publication status | E-pub ahead of print - 20 Feb 2024 |

## Abstract

## Keywords

- math.NT, 11G40 (Primary) 11G05, 11G10, 14G10 (Secondary)

## Cite this

- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS

**On the anticyclotomic Iwasawa theory of newforms at Eisenstein primes of semistable reduction.**/ Keller, Timo; Yin, Mulun.

2024.

Research output: Working paper/Preprint › Preprint

*On the anticyclotomic Iwasawa theory of newforms at Eisenstein primes of semistable reduction*. Advance online publication.

}

TY - UNPB

T1 - On the anticyclotomic Iwasawa theory of newforms at Eisenstein primes of semistable reduction

AU - Keller, Timo

AU - Yin, Mulun

N1 - Comments welcome

PY - 2024/2/20

Y1 - 2024/2/20

N2 - Let \(f\) be a newform of weight \(k\) and level \(N\) with trivial nebentypus. Let \(\mathfrak{p}\nmid 2N\) be a maximal prime ideal of the coefficient ring of \(f\) such that the self-dual twist of the mod-\(\mathfrak{p}\) Galois representation of \(f\) is reducible with constituents \(\phi,\psi\). Denote a decomposition group over the rational prime \(p\) below \(\mathfrak{p}\) by \(G_p\). We remove the condition \(\phi|_{G_p} \neq \mathbf{1}, \omega\) from [CGLS22], and generalize their results to newforms of arbitrary weights. As a consequence, we prove some Iwasawa main conjectures and get the \(p\)-part of the strong BSD conjecture for elliptic curves of analytic rank \(0\) or \(1\) over \(\mathbf{Q}\) in this setting. In particular, non-trivial \(p\)-torsion is allowed in the Mordell--Weil group. Using Hida families, we prove a Iwasawa main conjecture for newforms of weight \(2\) of multiplicative reduction at Eisenstein primes. In the above situations, we also get \(p\)-converse theorems to the theorems of Gross--Zagier--Kolyvagin. The \(p\)-converse theorems have applications to Goldfeld's conjecture in certain quadratic twist families of elliptic curves having a \(3\)-isogeny.

AB - Let \(f\) be a newform of weight \(k\) and level \(N\) with trivial nebentypus. Let \(\mathfrak{p}\nmid 2N\) be a maximal prime ideal of the coefficient ring of \(f\) such that the self-dual twist of the mod-\(\mathfrak{p}\) Galois representation of \(f\) is reducible with constituents \(\phi,\psi\). Denote a decomposition group over the rational prime \(p\) below \(\mathfrak{p}\) by \(G_p\). We remove the condition \(\phi|_{G_p} \neq \mathbf{1}, \omega\) from [CGLS22], and generalize their results to newforms of arbitrary weights. As a consequence, we prove some Iwasawa main conjectures and get the \(p\)-part of the strong BSD conjecture for elliptic curves of analytic rank \(0\) or \(1\) over \(\mathbf{Q}\) in this setting. In particular, non-trivial \(p\)-torsion is allowed in the Mordell--Weil group. Using Hida families, we prove a Iwasawa main conjecture for newforms of weight \(2\) of multiplicative reduction at Eisenstein primes. In the above situations, we also get \(p\)-converse theorems to the theorems of Gross--Zagier--Kolyvagin. The \(p\)-converse theorems have applications to Goldfeld's conjecture in certain quadratic twist families of elliptic curves having a \(3\)-isogeny.

KW - math.NT

KW - 11G40 (Primary) 11G05, 11G10, 14G10 (Secondary)

M3 - Preprint

BT - On the anticyclotomic Iwasawa theory of newforms at Eisenstein primes of semistable reduction

ER -