Details
Original language | English |
---|---|
Pages (from-to) | 1861-1874 |
Number of pages | 14 |
Journal | Journal of the American Society for Mass Spectrometry |
Volume | 31 |
Issue number | 9 |
Early online date | 16 Jul 2020 |
Publication status | Published - 2 Sept 2020 |
Abstract
Due to the operation at background pressures between 10-40 mbar and high reduced electric field strengths of up to 120 Td, the ion-molecule reactions in High Kinetic Energy Ion Mobility Spectrometers (HiKE-IMS) differ from those in classical ambient pressure IMS. In the positive ion polarity mode, the reactant ions H+(H2O)n, O2+(H2O)n, and NO+(H2O)n are observed in the HiKE-IMS. The relative abundances of these reactant ion species significantly depend on the reduced electric field strength in the reaction region, the operating pressure, and the water concentration in the reaction region. In this work, the formation of negative reactant ions in HiKE-IMS is investigated in detail. On the basis of kinetic and thermodynamic data from the literature, the processes resulting in the formation of negative reactant ions are kinetically modeled. To verify the model, we present measurements of the negative reactant ion population in the HiKE-IMS and its dependence on the reduced electric field strength as well as the water and carbon dioxide concentrations in the reaction region. The ion species underlying individual peaks in the ion mobility spectrum are identified by coupling the HiKE-IMS to a time-of-flight mass spectrometer (TOF-MS) using a simple gated interface that enables the transfer of selected peaks of the ion mobility spectrum into the TOF-MS. Both the theoretical model as well as the experimental data suggest the predominant generation of the oxygen-based ions O-, OH-, O2-, and O3- in purified air containing 70 ppmv of water and 30 ppmv of carbon dioxide. Additionally, small amounts of NO2- and CO3- are observed. Their relative abundances highly depend on the reduced electric field strength as well as the water and carbon dioxide concentration. An increase of the water concentration in the reaction region results in the generation of OH- ions, whereas increasing the carbon dioxide concentration favors the generation of CO3- ions, as expected.
Keywords
- corona discharge ionization, high kinetic energy ion mobility spectrometry, HiKE-IMS, IMS, ion mobility spectrometry, negative reactant ion formation
ASJC Scopus subject areas
- Biochemistry, Genetics and Molecular Biology(all)
- Structural Biology
- Chemistry(all)
- Spectroscopy
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Journal of the American Society for Mass Spectrometry, Vol. 31, No. 9, 02.09.2020, p. 1861-1874.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Negative Reactant Ion Formation in High Kinetic Energy Ion Mobility Spectrometry (HiKE-IMS)
AU - Allers, Maria
AU - Kirk, Ansgar T.
AU - Timke, Bennet
AU - Erdogdu, Duygu
AU - Wissdorf, Walter
AU - Benter, Thorsten
AU - Zimmermann, Stefan
N1 - Funding Information: This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, joint project BE 2124/8-1 - ZI 1288/8-1).
PY - 2020/9/2
Y1 - 2020/9/2
N2 - Due to the operation at background pressures between 10-40 mbar and high reduced electric field strengths of up to 120 Td, the ion-molecule reactions in High Kinetic Energy Ion Mobility Spectrometers (HiKE-IMS) differ from those in classical ambient pressure IMS. In the positive ion polarity mode, the reactant ions H+(H2O)n, O2+(H2O)n, and NO+(H2O)n are observed in the HiKE-IMS. The relative abundances of these reactant ion species significantly depend on the reduced electric field strength in the reaction region, the operating pressure, and the water concentration in the reaction region. In this work, the formation of negative reactant ions in HiKE-IMS is investigated in detail. On the basis of kinetic and thermodynamic data from the literature, the processes resulting in the formation of negative reactant ions are kinetically modeled. To verify the model, we present measurements of the negative reactant ion population in the HiKE-IMS and its dependence on the reduced electric field strength as well as the water and carbon dioxide concentrations in the reaction region. The ion species underlying individual peaks in the ion mobility spectrum are identified by coupling the HiKE-IMS to a time-of-flight mass spectrometer (TOF-MS) using a simple gated interface that enables the transfer of selected peaks of the ion mobility spectrum into the TOF-MS. Both the theoretical model as well as the experimental data suggest the predominant generation of the oxygen-based ions O-, OH-, O2-, and O3- in purified air containing 70 ppmv of water and 30 ppmv of carbon dioxide. Additionally, small amounts of NO2- and CO3- are observed. Their relative abundances highly depend on the reduced electric field strength as well as the water and carbon dioxide concentration. An increase of the water concentration in the reaction region results in the generation of OH- ions, whereas increasing the carbon dioxide concentration favors the generation of CO3- ions, as expected.
AB - Due to the operation at background pressures between 10-40 mbar and high reduced electric field strengths of up to 120 Td, the ion-molecule reactions in High Kinetic Energy Ion Mobility Spectrometers (HiKE-IMS) differ from those in classical ambient pressure IMS. In the positive ion polarity mode, the reactant ions H+(H2O)n, O2+(H2O)n, and NO+(H2O)n are observed in the HiKE-IMS. The relative abundances of these reactant ion species significantly depend on the reduced electric field strength in the reaction region, the operating pressure, and the water concentration in the reaction region. In this work, the formation of negative reactant ions in HiKE-IMS is investigated in detail. On the basis of kinetic and thermodynamic data from the literature, the processes resulting in the formation of negative reactant ions are kinetically modeled. To verify the model, we present measurements of the negative reactant ion population in the HiKE-IMS and its dependence on the reduced electric field strength as well as the water and carbon dioxide concentrations in the reaction region. The ion species underlying individual peaks in the ion mobility spectrum are identified by coupling the HiKE-IMS to a time-of-flight mass spectrometer (TOF-MS) using a simple gated interface that enables the transfer of selected peaks of the ion mobility spectrum into the TOF-MS. Both the theoretical model as well as the experimental data suggest the predominant generation of the oxygen-based ions O-, OH-, O2-, and O3- in purified air containing 70 ppmv of water and 30 ppmv of carbon dioxide. Additionally, small amounts of NO2- and CO3- are observed. Their relative abundances highly depend on the reduced electric field strength as well as the water and carbon dioxide concentration. An increase of the water concentration in the reaction region results in the generation of OH- ions, whereas increasing the carbon dioxide concentration favors the generation of CO3- ions, as expected.
KW - corona discharge ionization
KW - high kinetic energy ion mobility spectrometry
KW - HiKE-IMS
KW - IMS
KW - ion mobility spectrometry
KW - negative reactant ion formation
UR - http://www.scopus.com/inward/record.url?scp=85090251556&partnerID=8YFLogxK
U2 - 10.1021/jasms.0c00126
DO - 10.1021/jasms.0c00126
M3 - Article
C2 - 32672039
AN - SCOPUS:85090251556
VL - 31
SP - 1861
EP - 1874
JO - Journal of the American Society for Mass Spectrometry
JF - Journal of the American Society for Mass Spectrometry
SN - 1044-0305
IS - 9
ER -