Molecular analysis of the reactions in Salicornia europaea to varying NaCl concentrations at various stages of development to better exploit its potential as a new crop plant

Research output: Contribution to journalArticleResearchpeer review

Authors

Research Organisations

View graph of relations

Details

Original languageEnglish
Article number1454541
Pages (from-to)01-19
Number of pages19
JournalFrontiers in Plant Science
Volume15
Publication statusPublished - 3 Sept 2024

Abstract

Freshwater scarcity demands exploration of alternative resources like saline water and soils. Understanding the molecular mechanisms behind NaCl regulation in potential crop plants becomes increasingly important for promoting saline agriculture. This study investigated the euhalophyte Salicornia europaea, analyzing its gene expression, yield, and total phenolic compounds under hydroponic cultivation. We employed five salinity levels (0, 7.5, 15, 22.5, and 30 g/L NaCl) across five harvests at 15-day intervals, capturing plant development. Notably, this design deviated from conventional gene expression studies by recording organ-specific responses (shoots and roots) in plants adapted to long-term salinity treatments at various developmental stages. The highest fresh mass of S. europaea was observed four months after germination in 15 g/L NaCl. Identifying a reliable set of reference genes for normalizing gene expression data was crucial due to comparisons across shoots, roots, developmental stages, and salinity levels. A set of housekeeping genes – ubiquitin c (SeUBC), actin (SeActin) and dnaJ-like protein (SeDNAJ) – was identified for this purpose. Interestingly, plants grown without NaCl (0 g/L) displayed upregulation of certain genes associated with a NaCl deficiency related nutritional deprivation. These genes encode a tonoplast Na+/H+-antiporter (SeNHX1), a vacuolar H+-ATPase (SeVHA-A), two H+-PPases (SeVP1, SeVP2), a hkt1-like transporter (SeHKT), a vinorine synthase (SeVinS), a peroxidase (SePerox), and a plasma membrane Na+/H+-antiporter (SeSOS1). Other genes encoding an amino acid permease (SeAAP) and a proline transporter (SeProT) demonstrated marginal or dispersing salinity influence, suggesting their nuanced regulation during plants development. Notably, osmoregulatory genes (SeOsmP, SeProT) were upregulated in mature plants, highlighting their role in salinity adaptation. This study reveals distinct regulatory mechanisms in S. europaea for coping with varying salinity levels. Identifying and understanding physiological reactions and sodium responsive key genes further elucidate the relationship between sodium tolerance and the obligate sodium requirement as a nutrient in euhalophytes.

Keywords

    biomarker, development, gene expression, nutritional deficiency, osmoregulation, Salicornia europaea, salt stress

ASJC Scopus subject areas

Cite this

Download
@article{b122c8f0373547bcbed0e48c117873b4,
title = "Molecular analysis of the reactions in Salicornia europaea to varying NaCl concentrations at various stages of development to better exploit its potential as a new crop plant",
abstract = "Freshwater scarcity demands exploration of alternative resources like saline water and soils. Understanding the molecular mechanisms behind NaCl regulation in potential crop plants becomes increasingly important for promoting saline agriculture. This study investigated the euhalophyte Salicornia europaea, analyzing its gene expression, yield, and total phenolic compounds under hydroponic cultivation. We employed five salinity levels (0, 7.5, 15, 22.5, and 30 g/L NaCl) across five harvests at 15-day intervals, capturing plant development. Notably, this design deviated from conventional gene expression studies by recording organ-specific responses (shoots and roots) in plants adapted to long-term salinity treatments at various developmental stages. The highest fresh mass of S. europaea was observed four months after germination in 15 g/L NaCl. Identifying a reliable set of reference genes for normalizing gene expression data was crucial due to comparisons across shoots, roots, developmental stages, and salinity levels. A set of housekeeping genes – ubiquitin c (SeUBC), actin (SeActin) and dnaJ-like protein (SeDNAJ) – was identified for this purpose. Interestingly, plants grown without NaCl (0 g/L) displayed upregulation of certain genes associated with a NaCl deficiency related nutritional deprivation. These genes encode a tonoplast Na+/H+-antiporter (SeNHX1), a vacuolar H+-ATPase (SeVHA-A), two H+-PPases (SeVP1, SeVP2), a hkt1-like transporter (SeHKT), a vinorine synthase (SeVinS), a peroxidase (SePerox), and a plasma membrane Na+/H+-antiporter (SeSOS1). Other genes encoding an amino acid permease (SeAAP) and a proline transporter (SeProT) demonstrated marginal or dispersing salinity influence, suggesting their nuanced regulation during plants development. Notably, osmoregulatory genes (SeOsmP, SeProT) were upregulated in mature plants, highlighting their role in salinity adaptation. This study reveals distinct regulatory mechanisms in S. europaea for coping with varying salinity levels. Identifying and understanding physiological reactions and sodium responsive key genes further elucidate the relationship between sodium tolerance and the obligate sodium requirement as a nutrient in euhalophytes.",
keywords = "biomarker, development, gene expression, nutritional deficiency, osmoregulation, Salicornia europaea, salt stress",
author = "Andre Fussy and Jutta Papenbrock",
note = "Publisher Copyright: Copyright {\textcopyright} 2024 Fussy and Papenbrock.",
year = "2024",
month = sep,
day = "3",
doi = "10.3389/fpls.2024.1454541",
language = "English",
volume = "15",
pages = "01--19",
journal = "Frontiers in Plant Science",
issn = "1664-462X",
publisher = "Frontiers Media S.A.",

}

Download

TY - JOUR

T1 - Molecular analysis of the reactions in Salicornia europaea to varying NaCl concentrations at various stages of development to better exploit its potential as a new crop plant

AU - Fussy, Andre

AU - Papenbrock, Jutta

N1 - Publisher Copyright: Copyright © 2024 Fussy and Papenbrock.

PY - 2024/9/3

Y1 - 2024/9/3

N2 - Freshwater scarcity demands exploration of alternative resources like saline water and soils. Understanding the molecular mechanisms behind NaCl regulation in potential crop plants becomes increasingly important for promoting saline agriculture. This study investigated the euhalophyte Salicornia europaea, analyzing its gene expression, yield, and total phenolic compounds under hydroponic cultivation. We employed five salinity levels (0, 7.5, 15, 22.5, and 30 g/L NaCl) across five harvests at 15-day intervals, capturing plant development. Notably, this design deviated from conventional gene expression studies by recording organ-specific responses (shoots and roots) in plants adapted to long-term salinity treatments at various developmental stages. The highest fresh mass of S. europaea was observed four months after germination in 15 g/L NaCl. Identifying a reliable set of reference genes for normalizing gene expression data was crucial due to comparisons across shoots, roots, developmental stages, and salinity levels. A set of housekeeping genes – ubiquitin c (SeUBC), actin (SeActin) and dnaJ-like protein (SeDNAJ) – was identified for this purpose. Interestingly, plants grown without NaCl (0 g/L) displayed upregulation of certain genes associated with a NaCl deficiency related nutritional deprivation. These genes encode a tonoplast Na+/H+-antiporter (SeNHX1), a vacuolar H+-ATPase (SeVHA-A), two H+-PPases (SeVP1, SeVP2), a hkt1-like transporter (SeHKT), a vinorine synthase (SeVinS), a peroxidase (SePerox), and a plasma membrane Na+/H+-antiporter (SeSOS1). Other genes encoding an amino acid permease (SeAAP) and a proline transporter (SeProT) demonstrated marginal or dispersing salinity influence, suggesting their nuanced regulation during plants development. Notably, osmoregulatory genes (SeOsmP, SeProT) were upregulated in mature plants, highlighting their role in salinity adaptation. This study reveals distinct regulatory mechanisms in S. europaea for coping with varying salinity levels. Identifying and understanding physiological reactions and sodium responsive key genes further elucidate the relationship between sodium tolerance and the obligate sodium requirement as a nutrient in euhalophytes.

AB - Freshwater scarcity demands exploration of alternative resources like saline water and soils. Understanding the molecular mechanisms behind NaCl regulation in potential crop plants becomes increasingly important for promoting saline agriculture. This study investigated the euhalophyte Salicornia europaea, analyzing its gene expression, yield, and total phenolic compounds under hydroponic cultivation. We employed five salinity levels (0, 7.5, 15, 22.5, and 30 g/L NaCl) across five harvests at 15-day intervals, capturing plant development. Notably, this design deviated from conventional gene expression studies by recording organ-specific responses (shoots and roots) in plants adapted to long-term salinity treatments at various developmental stages. The highest fresh mass of S. europaea was observed four months after germination in 15 g/L NaCl. Identifying a reliable set of reference genes for normalizing gene expression data was crucial due to comparisons across shoots, roots, developmental stages, and salinity levels. A set of housekeeping genes – ubiquitin c (SeUBC), actin (SeActin) and dnaJ-like protein (SeDNAJ) – was identified for this purpose. Interestingly, plants grown without NaCl (0 g/L) displayed upregulation of certain genes associated with a NaCl deficiency related nutritional deprivation. These genes encode a tonoplast Na+/H+-antiporter (SeNHX1), a vacuolar H+-ATPase (SeVHA-A), two H+-PPases (SeVP1, SeVP2), a hkt1-like transporter (SeHKT), a vinorine synthase (SeVinS), a peroxidase (SePerox), and a plasma membrane Na+/H+-antiporter (SeSOS1). Other genes encoding an amino acid permease (SeAAP) and a proline transporter (SeProT) demonstrated marginal or dispersing salinity influence, suggesting their nuanced regulation during plants development. Notably, osmoregulatory genes (SeOsmP, SeProT) were upregulated in mature plants, highlighting their role in salinity adaptation. This study reveals distinct regulatory mechanisms in S. europaea for coping with varying salinity levels. Identifying and understanding physiological reactions and sodium responsive key genes further elucidate the relationship between sodium tolerance and the obligate sodium requirement as a nutrient in euhalophytes.

KW - biomarker

KW - development

KW - gene expression

KW - nutritional deficiency

KW - osmoregulation

KW - Salicornia europaea

KW - salt stress

UR - http://www.scopus.com/inward/record.url?scp=85204055630&partnerID=8YFLogxK

U2 - 10.3389/fpls.2024.1454541

DO - 10.3389/fpls.2024.1454541

M3 - Article

AN - SCOPUS:85204055630

VL - 15

SP - 1

EP - 19

JO - Frontiers in Plant Science

JF - Frontiers in Plant Science

SN - 1664-462X

M1 - 1454541

ER -