Details
Original language | English |
---|---|
Pages (from-to) | 689-697 |
Number of pages | 9 |
Journal | Journal of Plant Nutrition and Soil Science |
Volume | 175 |
Issue number | 5 |
Publication status | Published - 4 Jun 2012 |
Abstract
An essential prerequisite for a sustainable soil use is to maintain a satisfactory soil organic-matter (OM) level. This might be achieved by sound fertilization management, though impacts of fertilization on OM have been rarely investigated with the aid of physical fractionation techniques in semiarid regions. This study aimed at examining changes in organic C (OC) and N concentrations of physically separated soil OM pools after 26 y of fertilization at a site of the semiarid Loess Plateau in China. To separate sensitive OM pools, total macro-OM (> 0.05mm) was obtained from bulk soil by wet-sieving and then separated into light macro-OM (< 1.8 gcm-3) and heavy macro-OM (> 1.8 gcm-3) subfractions; bulk soil was also differentiated into light OM (< 1.8 gcm-3) and mineral-associated OM (> 1.8 gcm-3). Farmyard manure increased concentrations of total macro-OC and N by 19% and 25%, and those of light fraction OC and N by 36% and 46%, compared to no manuring; both light OC and N concentrations but only total macro-OC concentration responded positively to mineral fertilizations compared to no mineral fertilization. This demonstrated that the light-fraction OM was more sensitive to organic or inorganic fertilization than the total macro-OM. Mineral-associated OC and N concentrations also increased by manuring or mineral fertilizations, indicating an increase of stable OM relative to no fertilization treatment, however, their shares on bulk soil OC and N decreased. Mineral fertilizations improved soil OM quality by decreasing C : N ratio in the light OM fraction whereas manuring led to a decline of the C : N ratio in the total macro-OM fraction, with respect to nil treatment. Further fractionation of the total macro-OM according to density clarified that across treatments about 3/4 of total macro-OM was associated with minerals. Thus, by simultaneously applying particle-size and density separation procedures, we clearly demonstrated that the macro-OM differed from the light OM fraction not only in its chemical composition but also in associations with minerals. The proportion of the 0.5-0.25mm water-stable aggregates of soil was higher under organic or inorganic fertilizations than under no manure or no mineral fertilization, and increases in OC and N concentrations of water-stable aggregates as affected by fertilization were greater for 1-0.5 and 0.5-0.25mm classes than for the other classes. Results indicate that OM stocks in different soil pools can be increased and the loose aggregation of these strongly eroded loess soils can be improved by organic or inorganic fertilization.
Keywords
- Aggregate-associated soil organic matter, Combined particle-size and density soil fractionation, Light soil organic matter, Loess soil, Macro-soil organic matter, Mineral-associated soil organic matter
ASJC Scopus subject areas
- Agricultural and Biological Sciences(all)
- Soil Science
- Agricultural and Biological Sciences(all)
- Plant Science
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Journal of Plant Nutrition and Soil Science, Vol. 175, No. 5, 04.06.2012, p. 689-697.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Long-term fertilization and manuring effects on physically separated soil organic-matter pools under continuous wheat cropping at a rainfed semiarid site in China
AU - Zhe E, Sheng
AU - Gang Li, Xiao
AU - Ming Chen, Zhao
AU - Hang Li, Xiao
AU - Rong Song, Jian
AU - Guggenberger, Georg
PY - 2012/6/4
Y1 - 2012/6/4
N2 - An essential prerequisite for a sustainable soil use is to maintain a satisfactory soil organic-matter (OM) level. This might be achieved by sound fertilization management, though impacts of fertilization on OM have been rarely investigated with the aid of physical fractionation techniques in semiarid regions. This study aimed at examining changes in organic C (OC) and N concentrations of physically separated soil OM pools after 26 y of fertilization at a site of the semiarid Loess Plateau in China. To separate sensitive OM pools, total macro-OM (> 0.05mm) was obtained from bulk soil by wet-sieving and then separated into light macro-OM (< 1.8 gcm-3) and heavy macro-OM (> 1.8 gcm-3) subfractions; bulk soil was also differentiated into light OM (< 1.8 gcm-3) and mineral-associated OM (> 1.8 gcm-3). Farmyard manure increased concentrations of total macro-OC and N by 19% and 25%, and those of light fraction OC and N by 36% and 46%, compared to no manuring; both light OC and N concentrations but only total macro-OC concentration responded positively to mineral fertilizations compared to no mineral fertilization. This demonstrated that the light-fraction OM was more sensitive to organic or inorganic fertilization than the total macro-OM. Mineral-associated OC and N concentrations also increased by manuring or mineral fertilizations, indicating an increase of stable OM relative to no fertilization treatment, however, their shares on bulk soil OC and N decreased. Mineral fertilizations improved soil OM quality by decreasing C : N ratio in the light OM fraction whereas manuring led to a decline of the C : N ratio in the total macro-OM fraction, with respect to nil treatment. Further fractionation of the total macro-OM according to density clarified that across treatments about 3/4 of total macro-OM was associated with minerals. Thus, by simultaneously applying particle-size and density separation procedures, we clearly demonstrated that the macro-OM differed from the light OM fraction not only in its chemical composition but also in associations with minerals. The proportion of the 0.5-0.25mm water-stable aggregates of soil was higher under organic or inorganic fertilizations than under no manure or no mineral fertilization, and increases in OC and N concentrations of water-stable aggregates as affected by fertilization were greater for 1-0.5 and 0.5-0.25mm classes than for the other classes. Results indicate that OM stocks in different soil pools can be increased and the loose aggregation of these strongly eroded loess soils can be improved by organic or inorganic fertilization.
AB - An essential prerequisite for a sustainable soil use is to maintain a satisfactory soil organic-matter (OM) level. This might be achieved by sound fertilization management, though impacts of fertilization on OM have been rarely investigated with the aid of physical fractionation techniques in semiarid regions. This study aimed at examining changes in organic C (OC) and N concentrations of physically separated soil OM pools after 26 y of fertilization at a site of the semiarid Loess Plateau in China. To separate sensitive OM pools, total macro-OM (> 0.05mm) was obtained from bulk soil by wet-sieving and then separated into light macro-OM (< 1.8 gcm-3) and heavy macro-OM (> 1.8 gcm-3) subfractions; bulk soil was also differentiated into light OM (< 1.8 gcm-3) and mineral-associated OM (> 1.8 gcm-3). Farmyard manure increased concentrations of total macro-OC and N by 19% and 25%, and those of light fraction OC and N by 36% and 46%, compared to no manuring; both light OC and N concentrations but only total macro-OC concentration responded positively to mineral fertilizations compared to no mineral fertilization. This demonstrated that the light-fraction OM was more sensitive to organic or inorganic fertilization than the total macro-OM. Mineral-associated OC and N concentrations also increased by manuring or mineral fertilizations, indicating an increase of stable OM relative to no fertilization treatment, however, their shares on bulk soil OC and N decreased. Mineral fertilizations improved soil OM quality by decreasing C : N ratio in the light OM fraction whereas manuring led to a decline of the C : N ratio in the total macro-OM fraction, with respect to nil treatment. Further fractionation of the total macro-OM according to density clarified that across treatments about 3/4 of total macro-OM was associated with minerals. Thus, by simultaneously applying particle-size and density separation procedures, we clearly demonstrated that the macro-OM differed from the light OM fraction not only in its chemical composition but also in associations with minerals. The proportion of the 0.5-0.25mm water-stable aggregates of soil was higher under organic or inorganic fertilizations than under no manure or no mineral fertilization, and increases in OC and N concentrations of water-stable aggregates as affected by fertilization were greater for 1-0.5 and 0.5-0.25mm classes than for the other classes. Results indicate that OM stocks in different soil pools can be increased and the loose aggregation of these strongly eroded loess soils can be improved by organic or inorganic fertilization.
KW - Aggregate-associated soil organic matter
KW - Combined particle-size and density soil fractionation
KW - Light soil organic matter
KW - Loess soil
KW - Macro-soil organic matter
KW - Mineral-associated soil organic matter
UR - http://www.scopus.com/inward/record.url?scp=84872549139&partnerID=8YFLogxK
U2 - 10.1002/jpln.201100215
DO - 10.1002/jpln.201100215
M3 - Article
AN - SCOPUS:84872549139
VL - 175
SP - 689
EP - 697
JO - Journal of Plant Nutrition and Soil Science
JF - Journal of Plant Nutrition and Soil Science
SN - 1436-8730
IS - 5
ER -