Isotopic techniques to measure N2O, N2 and their sources

Research output: Chapter in book/report/conference proceedingContribution to book/anthologyResearchpeer review

Authors

  • M. Zaman
  • K. Kleineidam
  • L. Bakken
  • J. Berendt
  • C. Bracken
  • K. Butterbach-Bahl
  • Z. Cai
  • S. X. Chang
  • T. Clough
  • K. Dawar
  • W. X. Ding
  • P. Dörsch
  • M. dos Reis Martins
  • C. Eckhardt
  • S. Fiedler
  • T. Frosch
  • J. Goopy
  • C. M. Görres
  • A. Gupta
  • S. Henjes
  • M. E.G. Hofmann
  • M. A. Horn
  • M. M.R. Jahangir
  • A. Jansen-Willems
  • K. Lenhart
  • L. Heng
  • D. Lewicka-Szczebak
  • G. Lucic
  • L. Merbold
  • J. Mohn
  • L. Molstad
  • G. Moser
  • P. Murphy
  • A. Sanz-Cobena
  • M. Šimek
  • S. Urquiaga
  • R. Well
  • N. Wrage-Mönnig
  • S. Zaman
  • J. Zhang
  • C. Müller

Research Organisations

External Research Organisations

  • International Atomic Energy Agency (IAEA)
  • Justus Liebig University Giessen
  • Norwegian University of Life Sciences
  • University of Rostock
  • University College Dublin
  • Karlsruhe Institute of Technology (KIT)
  • CAS - Institute of Atmospheric Physics
  • International Livestock Research Institute
  • Nanjing Normal University
  • University of Alberta
  • Lincoln University
  • NWFP Agricultural University
  • Chinese Academy of Sciences (CAS)
  • Embrapa - Empresa Brasileira de Pesquisa Agropecuaria
  • Technische Universität Darmstadt
  • Hochschule Geisenheim University
  • Independent Consultant
  • Picarro B.V., Eindhoven
  • Bangladesh Agricultural University
  • Münster University of Applied Sciences
  • University of Wrocław
  • PICARRO
  • Swiss Federal Laboratories for Material Science and Technology (EMPA)
  • Technical University of Madrid (UPM)
  • University of South Bohemia
  • Johann Heinrich von Thünen Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries
  • University of Canterbury
View graph of relations

Details

Original languageEnglish
Title of host publicationMeasuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques
Subtitle of host publicationApplications of Nuclear Techniques for GHGs
PublisherSpringer International Publishing AG
Pages213-301
Number of pages89
ISBN (electronic)9783030553968
ISBN (print)9783030553951
Publication statusPublished - 30 Jan 2021

Abstract

GHG emissions are usually the result of several simultaneous processes. Furthermore, some gases such as N2 are very difficult to quantify and require special techniques. Therefore, in this chapter, the focus is on stable isotope methods. Both natural abundance techniques and enrichment techniques are used. Especially in the last decade, a number of methodological advances have been made. Thus, this chapter provides an overview and description of a number of current state-of-theart techniques, especially techniques using the stable isotope 15N. Basic principles and recent advances of the 15N gas flux method are presented to quantify N2 fluxes, but also the latest isotopologue and isotopomer methods to identify pathways for N2O production. The second part of the chapter is devoted to 15N tracing techniques, the theoretical background and recent methodological advances. A range of different methods is presented from analytical to numerical tools to identify and quantify pathway-specific N2O emissions. While this chapter is chiefly concerned with gaseous N emissions, a lot of the techniques can also be applied to other gases such as methane (CH4), as outlined in Sect. 5.3.

Keywords

    15N, 15N2, 15N2O, tracer technique

ASJC Scopus subject areas

Cite this

Isotopic techniques to measure N2O, N2 and their sources. / Zaman, M.; Kleineidam, K.; Bakken, L. et al.
Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques: Applications of Nuclear Techniques for GHGs. Springer International Publishing AG, 2021. p. 213-301.

Research output: Chapter in book/report/conference proceedingContribution to book/anthologyResearchpeer review

Zaman, M, Kleineidam, K, Bakken, L, Berendt, J, Bracken, C, Butterbach-Bahl, K, Cai, Z, Chang, SX, Clough, T, Dawar, K, Ding, WX, Dörsch, P, dos Reis Martins, M, Eckhardt, C, Fiedler, S, Frosch, T, Goopy, J, Görres, CM, Gupta, A, Henjes, S, Hofmann, MEG, Horn, MA, Jahangir, MMR, Jansen-Willems, A, Lenhart, K, Heng, L, Lewicka-Szczebak, D, Lucic, G, Merbold, L, Mohn, J, Molstad, L, Moser, G, Murphy, P, Sanz-Cobena, A, Šimek, M, Urquiaga, S, Well, R, Wrage-Mönnig, N, Zaman, S, Zhang, J & Müller, C 2021, Isotopic techniques to measure N2O, N2 and their sources. in Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques: Applications of Nuclear Techniques for GHGs. Springer International Publishing AG, pp. 213-301. https://doi.org/10.1007/978-3-030-55396-8_7
Zaman, M., Kleineidam, K., Bakken, L., Berendt, J., Bracken, C., Butterbach-Bahl, K., Cai, Z., Chang, S. X., Clough, T., Dawar, K., Ding, W. X., Dörsch, P., dos Reis Martins, M., Eckhardt, C., Fiedler, S., Frosch, T., Goopy, J., Görres, C. M., Gupta, A., ... Müller, C. (2021). Isotopic techniques to measure N2O, N2 and their sources. In Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques: Applications of Nuclear Techniques for GHGs (pp. 213-301). Springer International Publishing AG. https://doi.org/10.1007/978-3-030-55396-8_7
Zaman M, Kleineidam K, Bakken L, Berendt J, Bracken C, Butterbach-Bahl K et al. Isotopic techniques to measure N2O, N2 and their sources. In Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques: Applications of Nuclear Techniques for GHGs. Springer International Publishing AG. 2021. p. 213-301 doi: 10.1007/978-3-030-55396-8_7
Zaman, M. ; Kleineidam, K. ; Bakken, L. et al. / Isotopic techniques to measure N2O, N2 and their sources. Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques: Applications of Nuclear Techniques for GHGs. Springer International Publishing AG, 2021. pp. 213-301
Download
@inbook{25a50728385b4308a4a57afd9108d62d,
title = "Isotopic techniques to measure N2O, N2 and their sources",
abstract = "GHG emissions are usually the result of several simultaneous processes. Furthermore, some gases such as N2 are very difficult to quantify and require special techniques. Therefore, in this chapter, the focus is on stable isotope methods. Both natural abundance techniques and enrichment techniques are used. Especially in the last decade, a number of methodological advances have been made. Thus, this chapter provides an overview and description of a number of current state-of-theart techniques, especially techniques using the stable isotope 15N. Basic principles and recent advances of the 15N gas flux method are presented to quantify N2 fluxes, but also the latest isotopologue and isotopomer methods to identify pathways for N2O production. The second part of the chapter is devoted to 15N tracing techniques, the theoretical background and recent methodological advances. A range of different methods is presented from analytical to numerical tools to identify and quantify pathway-specific N2O emissions. While this chapter is chiefly concerned with gaseous N emissions, a lot of the techniques can also be applied to other gases such as methane (CH4), as outlined in Sect. 5.3.",
keywords = "15N, 15N2, 15N2O, tracer technique",
author = "M. Zaman and K. Kleineidam and L. Bakken and J. Berendt and C. Bracken and K. Butterbach-Bahl and Z. Cai and Chang, {S. X.} and T. Clough and K. Dawar and Ding, {W. X.} and P. D{\"o}rsch and {dos Reis Martins}, M. and C. Eckhardt and S. Fiedler and T. Frosch and J. Goopy and G{\"o}rres, {C. M.} and A. Gupta and S. Henjes and Hofmann, {M. E.G.} and Horn, {M. A.} and Jahangir, {M. M.R.} and A. Jansen-Willems and K. Lenhart and L. Heng and D. Lewicka-Szczebak and G. Lucic and L. Merbold and J. Mohn and L. Molstad and G. Moser and P. Murphy and A. Sanz-Cobena and M. {\v S}imek and S. Urquiaga and R. Well and N. Wrage-M{\"o}nnig and S. Zaman and J. Zhang and C. M{\"u}ller",
year = "2021",
month = jan,
day = "30",
doi = "10.1007/978-3-030-55396-8_7",
language = "English",
isbn = "9783030553951",
pages = "213--301",
booktitle = "Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques",
publisher = "Springer International Publishing AG",
address = "Switzerland",

}

Download

TY - CHAP

T1 - Isotopic techniques to measure N2O, N2 and their sources

AU - Zaman, M.

AU - Kleineidam, K.

AU - Bakken, L.

AU - Berendt, J.

AU - Bracken, C.

AU - Butterbach-Bahl, K.

AU - Cai, Z.

AU - Chang, S. X.

AU - Clough, T.

AU - Dawar, K.

AU - Ding, W. X.

AU - Dörsch, P.

AU - dos Reis Martins, M.

AU - Eckhardt, C.

AU - Fiedler, S.

AU - Frosch, T.

AU - Goopy, J.

AU - Görres, C. M.

AU - Gupta, A.

AU - Henjes, S.

AU - Hofmann, M. E.G.

AU - Horn, M. A.

AU - Jahangir, M. M.R.

AU - Jansen-Willems, A.

AU - Lenhart, K.

AU - Heng, L.

AU - Lewicka-Szczebak, D.

AU - Lucic, G.

AU - Merbold, L.

AU - Mohn, J.

AU - Molstad, L.

AU - Moser, G.

AU - Murphy, P.

AU - Sanz-Cobena, A.

AU - Šimek, M.

AU - Urquiaga, S.

AU - Well, R.

AU - Wrage-Mönnig, N.

AU - Zaman, S.

AU - Zhang, J.

AU - Müller, C.

PY - 2021/1/30

Y1 - 2021/1/30

N2 - GHG emissions are usually the result of several simultaneous processes. Furthermore, some gases such as N2 are very difficult to quantify and require special techniques. Therefore, in this chapter, the focus is on stable isotope methods. Both natural abundance techniques and enrichment techniques are used. Especially in the last decade, a number of methodological advances have been made. Thus, this chapter provides an overview and description of a number of current state-of-theart techniques, especially techniques using the stable isotope 15N. Basic principles and recent advances of the 15N gas flux method are presented to quantify N2 fluxes, but also the latest isotopologue and isotopomer methods to identify pathways for N2O production. The second part of the chapter is devoted to 15N tracing techniques, the theoretical background and recent methodological advances. A range of different methods is presented from analytical to numerical tools to identify and quantify pathway-specific N2O emissions. While this chapter is chiefly concerned with gaseous N emissions, a lot of the techniques can also be applied to other gases such as methane (CH4), as outlined in Sect. 5.3.

AB - GHG emissions are usually the result of several simultaneous processes. Furthermore, some gases such as N2 are very difficult to quantify and require special techniques. Therefore, in this chapter, the focus is on stable isotope methods. Both natural abundance techniques and enrichment techniques are used. Especially in the last decade, a number of methodological advances have been made. Thus, this chapter provides an overview and description of a number of current state-of-theart techniques, especially techniques using the stable isotope 15N. Basic principles and recent advances of the 15N gas flux method are presented to quantify N2 fluxes, but also the latest isotopologue and isotopomer methods to identify pathways for N2O production. The second part of the chapter is devoted to 15N tracing techniques, the theoretical background and recent methodological advances. A range of different methods is presented from analytical to numerical tools to identify and quantify pathway-specific N2O emissions. While this chapter is chiefly concerned with gaseous N emissions, a lot of the techniques can also be applied to other gases such as methane (CH4), as outlined in Sect. 5.3.

KW - 15N

KW - 15N2

KW - 15N2O

KW - tracer technique

UR - http://www.scopus.com/inward/record.url?scp=85149194249&partnerID=8YFLogxK

U2 - 10.1007/978-3-030-55396-8_7

DO - 10.1007/978-3-030-55396-8_7

M3 - Contribution to book/anthology

AN - SCOPUS:85149194249

SN - 9783030553951

SP - 213

EP - 301

BT - Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques

PB - Springer International Publishing AG

ER -

By the same author(s)