Details
Original language | English |
---|---|
Article number | 2740 |
Journal | Sensors |
Volume | 22 |
Issue number | 7 |
Publication status | Published - 2 Apr 2022 |
Externally published | Yes |
Abstract
This work focuses on the assessment of UT1-UTC estimates from various types of sessions during the CONT17 campaign. We chose the CONT17 campaign as it provides 15 days of continuous, high-quality VLBI data from two legacy networks (S/X band), i.e., Legacy-1 (IVS) and Legacy-2 (VLBA) (having different network geometry and are non-overlapping), two types of Intensive sessions, i.e., IVS and Russian Intensives, and five days of new-generation, broadband VGOS sessions. This work also investigates different approaches to optimally compare dUT1 from Intensives with respect to the 24 h sessions given the different parameterization adopted for analyzing Intensives and different session lengths. One approach includes the estimation of dUT1 from pseudo Intensives, which are created from the 24 h sessions having their epochs synchronized with respect to the Intensive sessions. Besides, we assessed the quality of the dUT1 estimated from VGOS sessions at daily and sub-daily resolution. The study suggests that a different approach should be adopted when comparing the dUT1 from the Intensives, i.e., comparison of dUT1 value at the mean epoch of an Intensive session. The initial results regarding the VGOS sessions show that the dUT1 estimated from VGOS shows good agreement with the legacy network despite featuring fewer observations and stations. In the case of sub-daily dUT1 from VGOS sessions, we found that estimating dUT1 with 6 h resolution is superior to other sub-daily resolutions. Moreover, we introduced a new concept of sub-daily dUT1-tie to improve the estimation of dUT1 from the Intensive sessions. We observed an improvement of up to 20% with respect to the dUT1 from the 24 h sessions.
Keywords
- UT1-UTC, VLBI, CONT17, VGOS, Intensive session
ASJC Scopus subject areas
- Chemistry(all)
- Analytical Chemistry
- Computer Science(all)
- Information Systems
- Physics and Astronomy(all)
- Instrumentation
- Physics and Astronomy(all)
- Atomic and Molecular Physics, and Optics
- Engineering(all)
- Electrical and Electronic Engineering
- Biochemistry, Genetics and Molecular Biology(all)
- Biochemistry
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Sensors, Vol. 22, No. 7, 2740, 02.04.2022.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Inter-Comparison of UT1-UTC from 24-Hour, Intensives, and VGOS Sessions during CONT17
AU - Raut, Shrishail
AU - Heinkelmann, Robert
AU - Modiri, Sadegh
AU - Belda, Santiago
AU - Balidakis, Kyriakos
AU - Schuh, Harald
N1 - Funding information: The publication costs are supported within the funding programme “Open Access Pub-likationskosten” Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project Number 491075472. K.B. is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)-Project-ID 434617780—SFB 1464 (TerraQ). S.B. was partially supported by Generalitat Valenciana (SEJIGENT/2021/001), the European Union—NextGenerationEU (ZAMBRANO 21-04) and Ministerio de Ciencia e Innovación (Spanish Project PID2020-119383GB-I00).
PY - 2022/4/2
Y1 - 2022/4/2
N2 - This work focuses on the assessment of UT1-UTC estimates from various types of sessions during the CONT17 campaign. We chose the CONT17 campaign as it provides 15 days of continuous, high-quality VLBI data from two legacy networks (S/X band), i.e., Legacy-1 (IVS) and Legacy-2 (VLBA) (having different network geometry and are non-overlapping), two types of Intensive sessions, i.e., IVS and Russian Intensives, and five days of new-generation, broadband VGOS sessions. This work also investigates different approaches to optimally compare dUT1 from Intensives with respect to the 24 h sessions given the different parameterization adopted for analyzing Intensives and different session lengths. One approach includes the estimation of dUT1 from pseudo Intensives, which are created from the 24 h sessions having their epochs synchronized with respect to the Intensive sessions. Besides, we assessed the quality of the dUT1 estimated from VGOS sessions at daily and sub-daily resolution. The study suggests that a different approach should be adopted when comparing the dUT1 from the Intensives, i.e., comparison of dUT1 value at the mean epoch of an Intensive session. The initial results regarding the VGOS sessions show that the dUT1 estimated from VGOS shows good agreement with the legacy network despite featuring fewer observations and stations. In the case of sub-daily dUT1 from VGOS sessions, we found that estimating dUT1 with 6 h resolution is superior to other sub-daily resolutions. Moreover, we introduced a new concept of sub-daily dUT1-tie to improve the estimation of dUT1 from the Intensive sessions. We observed an improvement of up to 20% with respect to the dUT1 from the 24 h sessions.
AB - This work focuses on the assessment of UT1-UTC estimates from various types of sessions during the CONT17 campaign. We chose the CONT17 campaign as it provides 15 days of continuous, high-quality VLBI data from two legacy networks (S/X band), i.e., Legacy-1 (IVS) and Legacy-2 (VLBA) (having different network geometry and are non-overlapping), two types of Intensive sessions, i.e., IVS and Russian Intensives, and five days of new-generation, broadband VGOS sessions. This work also investigates different approaches to optimally compare dUT1 from Intensives with respect to the 24 h sessions given the different parameterization adopted for analyzing Intensives and different session lengths. One approach includes the estimation of dUT1 from pseudo Intensives, which are created from the 24 h sessions having their epochs synchronized with respect to the Intensive sessions. Besides, we assessed the quality of the dUT1 estimated from VGOS sessions at daily and sub-daily resolution. The study suggests that a different approach should be adopted when comparing the dUT1 from the Intensives, i.e., comparison of dUT1 value at the mean epoch of an Intensive session. The initial results regarding the VGOS sessions show that the dUT1 estimated from VGOS shows good agreement with the legacy network despite featuring fewer observations and stations. In the case of sub-daily dUT1 from VGOS sessions, we found that estimating dUT1 with 6 h resolution is superior to other sub-daily resolutions. Moreover, we introduced a new concept of sub-daily dUT1-tie to improve the estimation of dUT1 from the Intensive sessions. We observed an improvement of up to 20% with respect to the dUT1 from the 24 h sessions.
KW - UT1-UTC
KW - VLBI
KW - CONT17
KW - VGOS
KW - Intensive session
UR - http://www.scopus.com/inward/record.url?scp=85127384958&partnerID=8YFLogxK
U2 - 10.3390/s22072740
DO - 10.3390/s22072740
M3 - Article
VL - 22
JO - Sensors
JF - Sensors
SN - 1424-3210
IS - 7
M1 - 2740
ER -