Details
Original language | English |
---|---|
Pages (from-to) | 62-70 |
Number of pages | 9 |
Journal | Nutrition research |
Volume | 131 |
Early online date | 17 Sept 2024 |
Publication status | Published - Nov 2024 |
Abstract
Prediabetes and type 2 diabetes mellitus are growing global health concerns, predisposing individuals to various vascular complications. Lifestyle modifications, including dietary interventions, offer promising avenues for prevention and management. Using a multivariable-adjusted model, we analyzed the cross-sectional associations between plasma proportions (% of total fatty acids) of omega-3 polyunsaturated fatty acids (n3 PUFA, including total n3 PUFA, docosahexaenoic acid [DHA], non-DHA n3 PUFA), and glycated hemoglobin A1c (HbA1c) as well as the prevalence of prediabetes in a sample from the UK Biobank cohort. Our hypothesis was that proportions of n3 PUFA, especially DHA, would by inversely associated with the prediabetes prevalence. The sample (n = 92,762; 54.5% females) had an average age of 56 years and was overweight (mean body mass index = 27). The mean plasma DHA proportion in the sample was 2.03% (standard deviation [SD] = 0.67%), non-DHA n3 PUFA was 2.41% (SD = 1.02%) and total n3 PUFA was 4.43% (SD = 1.56%). Prediabetic individuals were identified by blood HbA1c proportions between 5.7% and 6.4% (39-46 mmol/mol) according to American Diabetes Association criteria. Each of the three n3 PUFA biomarkers was inversely associated with HbA1c proportions. In particular, DHA showed the strongest inverse association, with an OR of 0.62 (95% confidence intervals: 0.58, 0.67; P < .001) when comparing quintiles 5 to 1 in a fully adjusted model. These findings suggest a potential protective role of n3 PUFA, particularly DHA, in mitigating the risk of having prediabetes. Further prospective investigations are needed to clarify whether long-chain n3 PUFA could function as modifiable factors for prediabetes.
Keywords
- Docosahexaenoic acid, Eicosapentaenoic acid, Erythrocyte, Fish intake, Predictor
ASJC Scopus subject areas
- Medicine(all)
- Endocrinology, Diabetes and Metabolism
- Biochemistry, Genetics and Molecular Biology(all)
- Endocrinology
- Nursing(all)
- Nutrition and Dietetics
Sustainable Development Goals
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Nutrition research, Vol. 131, 11.2024, p. 62-70.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Higher docosahexaenoic acid proportions in blood are inversely associated with the prevalence of prediabetes
T2 - Evidence from the UK Biobank
AU - Schuchardt, Jan Philipp
AU - Hahn, Andreas
AU - Greupner, Theresa
AU - Tintle, Nathan L.
AU - Westra, Jason
AU - Harris, William S.
N1 - Publisher Copyright: © 2024 The Author(s)
PY - 2024/11
Y1 - 2024/11
N2 - Prediabetes and type 2 diabetes mellitus are growing global health concerns, predisposing individuals to various vascular complications. Lifestyle modifications, including dietary interventions, offer promising avenues for prevention and management. Using a multivariable-adjusted model, we analyzed the cross-sectional associations between plasma proportions (% of total fatty acids) of omega-3 polyunsaturated fatty acids (n3 PUFA, including total n3 PUFA, docosahexaenoic acid [DHA], non-DHA n3 PUFA), and glycated hemoglobin A1c (HbA1c) as well as the prevalence of prediabetes in a sample from the UK Biobank cohort. Our hypothesis was that proportions of n3 PUFA, especially DHA, would by inversely associated with the prediabetes prevalence. The sample (n = 92,762; 54.5% females) had an average age of 56 years and was overweight (mean body mass index = 27). The mean plasma DHA proportion in the sample was 2.03% (standard deviation [SD] = 0.67%), non-DHA n3 PUFA was 2.41% (SD = 1.02%) and total n3 PUFA was 4.43% (SD = 1.56%). Prediabetic individuals were identified by blood HbA1c proportions between 5.7% and 6.4% (39-46 mmol/mol) according to American Diabetes Association criteria. Each of the three n3 PUFA biomarkers was inversely associated with HbA1c proportions. In particular, DHA showed the strongest inverse association, with an OR of 0.62 (95% confidence intervals: 0.58, 0.67; P < .001) when comparing quintiles 5 to 1 in a fully adjusted model. These findings suggest a potential protective role of n3 PUFA, particularly DHA, in mitigating the risk of having prediabetes. Further prospective investigations are needed to clarify whether long-chain n3 PUFA could function as modifiable factors for prediabetes.
AB - Prediabetes and type 2 diabetes mellitus are growing global health concerns, predisposing individuals to various vascular complications. Lifestyle modifications, including dietary interventions, offer promising avenues for prevention and management. Using a multivariable-adjusted model, we analyzed the cross-sectional associations between plasma proportions (% of total fatty acids) of omega-3 polyunsaturated fatty acids (n3 PUFA, including total n3 PUFA, docosahexaenoic acid [DHA], non-DHA n3 PUFA), and glycated hemoglobin A1c (HbA1c) as well as the prevalence of prediabetes in a sample from the UK Biobank cohort. Our hypothesis was that proportions of n3 PUFA, especially DHA, would by inversely associated with the prediabetes prevalence. The sample (n = 92,762; 54.5% females) had an average age of 56 years and was overweight (mean body mass index = 27). The mean plasma DHA proportion in the sample was 2.03% (standard deviation [SD] = 0.67%), non-DHA n3 PUFA was 2.41% (SD = 1.02%) and total n3 PUFA was 4.43% (SD = 1.56%). Prediabetic individuals were identified by blood HbA1c proportions between 5.7% and 6.4% (39-46 mmol/mol) according to American Diabetes Association criteria. Each of the three n3 PUFA biomarkers was inversely associated with HbA1c proportions. In particular, DHA showed the strongest inverse association, with an OR of 0.62 (95% confidence intervals: 0.58, 0.67; P < .001) when comparing quintiles 5 to 1 in a fully adjusted model. These findings suggest a potential protective role of n3 PUFA, particularly DHA, in mitigating the risk of having prediabetes. Further prospective investigations are needed to clarify whether long-chain n3 PUFA could function as modifiable factors for prediabetes.
KW - Docosahexaenoic acid
KW - Eicosapentaenoic acid
KW - Erythrocyte
KW - Fish intake
KW - Predictor
UR - http://www.scopus.com/inward/record.url?scp=85205570922&partnerID=8YFLogxK
U2 - 10.1016/j.nutres.2024.09.009
DO - 10.1016/j.nutres.2024.09.009
M3 - Article
AN - SCOPUS:85205570922
VL - 131
SP - 62
EP - 70
JO - Nutrition research
JF - Nutrition research
SN - 0271-5317
ER -