Details
Original language | English |
---|---|
Title of host publication | Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques |
Subtitle of host publication | Applications of Nuclear Techniques for GHGs |
Place of Publication | Cham |
Publisher | Springer International Publishing AG |
Pages | 1-10 |
Number of pages | 10 |
ISBN (electronic) | 9783030553968 |
ISBN (print) | 9783030553951 |
Publication status | Published - 30 Jan 2021 |
Abstract
The rapidly changing global climate due to increased emission of anthropogenic greenhouse gases (GHGs) is leading to an increased occurrence of extreme weather events such as droughts, floods, and heatwaves. The three major GHGs are carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). The major natural sources of CO2 include ocean-atmosphere exchange, respiration of animals, soils (microbial respiration) and plants, and volcanic eruption; while the anthropogenic sources include burning of fossil fuel (coal, natural gas, and oil), deforestation, and the cultivation of land that increases the decomposition of soil organic matter and crop and animal residues. Natural sources of CH4 emission include wetlands, termite activities, and oceans. Paddy fields used for rice production, livestock production systems (enteric emission from ruminants), landfills, and the production and use of fossil fuels are the main anthropogenic sources of CH4. Nitrous oxide, in addition to being a major GHG, is also an ozone-depleting gas. N2O is emitted by natural processes from oceans and terrestrial ecosystems. Anthropogenic N2O emissions occur mostly through agricultural and other land-use activities and are associated with the intensification of agricultural and other human activities such as increased use of synthetic fertiliser (119.4 million tonnes of N worldwide in 2019), inefficient use of irrigation water, deposition of animal excreta (urine and dung) from grazing animals, excessive and inefficient application of farm effluents and animal manure to croplands and pastures, and management practices that enhance soil organic N mineralisation and C decomposition. Agriculture could act as a source and a sink of GHGs. Besides direct sources, GHGs also come from various indirect sources, including upstream and downstream emissions in agricultural systems and ammonia (NH3) deposition from fertiliser and animal manure.
Keywords
- Animals, Climate change, CO2, GHG, N2O, NH3
ASJC Scopus subject areas
- Environmental Science(all)
- General Environmental Science
- Engineering(all)
- General Engineering
- Agricultural and Biological Sciences(all)
- General Agricultural and Biological Sciences
Sustainable Development Goals
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques: Applications of Nuclear Techniques for GHGs. Cham: Springer International Publishing AG, 2021. p. 1-10.
Research output: Chapter in book/report/conference proceeding › Contribution to book/anthology › Research › peer review
}
TY - CHAP
T1 - Greenhouse gases from agriculture
AU - Zaman, M.
AU - Kleineidam, K.
AU - Bakken, L.
AU - Berendt, J.
AU - Bracken, C.
AU - Butterbach-Bahl, K.
AU - Cai, Z.
AU - Chang, S. X.
AU - Clough, T.
AU - Dawar, K.
AU - Ding, W. X.
AU - Dörsch, P.
AU - dos Reis Martins, M.
AU - Eckhardt, C.
AU - Fiedler, S.
AU - Frosch, T.
AU - Goopy, J.
AU - Görres, C. M.
AU - Gupta, A.
AU - Henjes, S.
AU - Hofmann, M. E.G.
AU - Horn, M. A.
AU - Jahangir, M. M.R.
AU - Jansen-Willems, A.
AU - Lenhart, K.
AU - Heng, L.
AU - Lewicka-Szczebak, D.
AU - Lucic, G.
AU - Merbold, L.
AU - Mohn, J.
AU - Molstad, L.
AU - Moser, G.
AU - Murphy, P.
AU - Sanz-Cobena, A.
AU - Šimek, M.
AU - Urquiaga, S.
AU - Well, R.
AU - Wrage-Mönnig, N.
AU - Zaman, S.
AU - Zhang, J.
AU - Müller, C.
N1 - Publisher Copyright: © The Author(s) 2021. All rights reserved.
PY - 2021/1/30
Y1 - 2021/1/30
N2 - The rapidly changing global climate due to increased emission of anthropogenic greenhouse gases (GHGs) is leading to an increased occurrence of extreme weather events such as droughts, floods, and heatwaves. The three major GHGs are carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). The major natural sources of CO2 include ocean-atmosphere exchange, respiration of animals, soils (microbial respiration) and plants, and volcanic eruption; while the anthropogenic sources include burning of fossil fuel (coal, natural gas, and oil), deforestation, and the cultivation of land that increases the decomposition of soil organic matter and crop and animal residues. Natural sources of CH4 emission include wetlands, termite activities, and oceans. Paddy fields used for rice production, livestock production systems (enteric emission from ruminants), landfills, and the production and use of fossil fuels are the main anthropogenic sources of CH4. Nitrous oxide, in addition to being a major GHG, is also an ozone-depleting gas. N2O is emitted by natural processes from oceans and terrestrial ecosystems. Anthropogenic N2O emissions occur mostly through agricultural and other land-use activities and are associated with the intensification of agricultural and other human activities such as increased use of synthetic fertiliser (119.4 million tonnes of N worldwide in 2019), inefficient use of irrigation water, deposition of animal excreta (urine and dung) from grazing animals, excessive and inefficient application of farm effluents and animal manure to croplands and pastures, and management practices that enhance soil organic N mineralisation and C decomposition. Agriculture could act as a source and a sink of GHGs. Besides direct sources, GHGs also come from various indirect sources, including upstream and downstream emissions in agricultural systems and ammonia (NH3) deposition from fertiliser and animal manure.
AB - The rapidly changing global climate due to increased emission of anthropogenic greenhouse gases (GHGs) is leading to an increased occurrence of extreme weather events such as droughts, floods, and heatwaves. The three major GHGs are carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). The major natural sources of CO2 include ocean-atmosphere exchange, respiration of animals, soils (microbial respiration) and plants, and volcanic eruption; while the anthropogenic sources include burning of fossil fuel (coal, natural gas, and oil), deforestation, and the cultivation of land that increases the decomposition of soil organic matter and crop and animal residues. Natural sources of CH4 emission include wetlands, termite activities, and oceans. Paddy fields used for rice production, livestock production systems (enteric emission from ruminants), landfills, and the production and use of fossil fuels are the main anthropogenic sources of CH4. Nitrous oxide, in addition to being a major GHG, is also an ozone-depleting gas. N2O is emitted by natural processes from oceans and terrestrial ecosystems. Anthropogenic N2O emissions occur mostly through agricultural and other land-use activities and are associated with the intensification of agricultural and other human activities such as increased use of synthetic fertiliser (119.4 million tonnes of N worldwide in 2019), inefficient use of irrigation water, deposition of animal excreta (urine and dung) from grazing animals, excessive and inefficient application of farm effluents and animal manure to croplands and pastures, and management practices that enhance soil organic N mineralisation and C decomposition. Agriculture could act as a source and a sink of GHGs. Besides direct sources, GHGs also come from various indirect sources, including upstream and downstream emissions in agricultural systems and ammonia (NH3) deposition from fertiliser and animal manure.
KW - Animals
KW - Climate change
KW - CO2
KW - GHG
KW - N2O
KW - NH3
UR - http://www.scopus.com/inward/record.url?scp=85149189628&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-55396-8_1
DO - 10.1007/978-3-030-55396-8_1
M3 - Contribution to book/anthology
AN - SCOPUS:85149189628
SN - 9783030553951
SP - 1
EP - 10
BT - Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques
PB - Springer International Publishing AG
CY - Cham
ER -