Details
Original language | English |
---|---|
Article number | 1437132 |
Number of pages | 16 |
Journal | Frontiers in Plant Science |
Volume | 15 |
Publication status | Published - 18 Oct 2024 |
Externally published | Yes |
Abstract
Diplocarpon coronariae is a fungal pathogen that is prevalent in low-input apple production. Over the past 15 years, it has become increasingly distributed in Europe. However, comprehensive insights into its biology and pathogenicity remain limited. One particular aspect is the rarity of the sexual morph of this pathogen, a phenomenon hitherto unobserved in Europe. Diplocarpon coronariae reproduces through a heterothallic mating system requiring at least two different mating types for sexual reproduction. Genes determining the mating types are located on the mating-type locus. In this study, D. coronariae strain DC1_JKI from Dresden, Germany, was sequenced and used to unravel the structure of the mating type locus. Using short-read and long-read sequencing methods, the first gapless and near-complete telomere-to-telomere genome assembly of D. coronariae was achieved. The assembled genome spans 51.2 Mbp and comprises 21 chromosome-scale contigs of high completeness. The generated genome sequence was used to in silico elucidate the structure of the mating-type locus, identified as MAT1-2. Furthermore, an examination of MAT1-1 and MAT1-2 frequency across a diverse set of samples sourced from Europe and Asia revealed the exclusive presence of MAT1-2 in European samples, whereas both MAT loci were present in Asian counterparts. Our findings suggest an explanation for the absence of the sexual morph, potentially linked to the absence of the second mating idiomorph of D. coronariae in European apple orchards.
Keywords
- apple blotch, D. coronariae, genome sequence, long reads, Malus, mating types, short reads
ASJC Scopus subject areas
- Agricultural and Biological Sciences(all)
- Plant Science
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Frontiers in Plant Science, Vol. 15, 1437132, 18.10.2024.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Genome sequence of a European Diplocarpon coronariae strain and in silico structure of the mating-type locus
AU - Richter, Sophie
AU - Kind, Sabine
AU - Oberhänsli, Thomas Wolfgang
AU - Schneider, Michael
AU - Nenasheva, Natalia
AU - Hoff, Katharina
AU - Keilwagen, Jens
AU - Yeon, Il Kweon
AU - Philion, Vincent
AU - Moriya, Shigeki
AU - Flachowsky, Henryk
AU - Patocchi, Andrea
AU - Wöhner, Thomas Wolfgang
N1 - Publisher Copyright: Copyright © 2024 Richter, Kind, Oberhänsli, Schneider, Nenasheva, Hoff, Keilwagen, Yeon, Philion, Moriya, Flachowsky, Patocchi and Wöhner.
PY - 2024/10/18
Y1 - 2024/10/18
N2 - Diplocarpon coronariae is a fungal pathogen that is prevalent in low-input apple production. Over the past 15 years, it has become increasingly distributed in Europe. However, comprehensive insights into its biology and pathogenicity remain limited. One particular aspect is the rarity of the sexual morph of this pathogen, a phenomenon hitherto unobserved in Europe. Diplocarpon coronariae reproduces through a heterothallic mating system requiring at least two different mating types for sexual reproduction. Genes determining the mating types are located on the mating-type locus. In this study, D. coronariae strain DC1_JKI from Dresden, Germany, was sequenced and used to unravel the structure of the mating type locus. Using short-read and long-read sequencing methods, the first gapless and near-complete telomere-to-telomere genome assembly of D. coronariae was achieved. The assembled genome spans 51.2 Mbp and comprises 21 chromosome-scale contigs of high completeness. The generated genome sequence was used to in silico elucidate the structure of the mating-type locus, identified as MAT1-2. Furthermore, an examination of MAT1-1 and MAT1-2 frequency across a diverse set of samples sourced from Europe and Asia revealed the exclusive presence of MAT1-2 in European samples, whereas both MAT loci were present in Asian counterparts. Our findings suggest an explanation for the absence of the sexual morph, potentially linked to the absence of the second mating idiomorph of D. coronariae in European apple orchards.
AB - Diplocarpon coronariae is a fungal pathogen that is prevalent in low-input apple production. Over the past 15 years, it has become increasingly distributed in Europe. However, comprehensive insights into its biology and pathogenicity remain limited. One particular aspect is the rarity of the sexual morph of this pathogen, a phenomenon hitherto unobserved in Europe. Diplocarpon coronariae reproduces through a heterothallic mating system requiring at least two different mating types for sexual reproduction. Genes determining the mating types are located on the mating-type locus. In this study, D. coronariae strain DC1_JKI from Dresden, Germany, was sequenced and used to unravel the structure of the mating type locus. Using short-read and long-read sequencing methods, the first gapless and near-complete telomere-to-telomere genome assembly of D. coronariae was achieved. The assembled genome spans 51.2 Mbp and comprises 21 chromosome-scale contigs of high completeness. The generated genome sequence was used to in silico elucidate the structure of the mating-type locus, identified as MAT1-2. Furthermore, an examination of MAT1-1 and MAT1-2 frequency across a diverse set of samples sourced from Europe and Asia revealed the exclusive presence of MAT1-2 in European samples, whereas both MAT loci were present in Asian counterparts. Our findings suggest an explanation for the absence of the sexual morph, potentially linked to the absence of the second mating idiomorph of D. coronariae in European apple orchards.
KW - apple blotch
KW - D. coronariae
KW - genome sequence
KW - long reads
KW - Malus
KW - mating types
KW - short reads
UR - http://www.scopus.com/inward/record.url?scp=85208580391&partnerID=8YFLogxK
U2 - 10.3389/fpls.2024.1437132
DO - 10.3389/fpls.2024.1437132
M3 - Article
AN - SCOPUS:85208580391
VL - 15
JO - Frontiers in Plant Science
JF - Frontiers in Plant Science
SN - 1664-462X
M1 - 1437132
ER -