Details
Original language | English |
---|---|
Article number | 126 |
Journal | Water, Air, and Soil Pollution |
Volume | 231 |
Issue number | 3 |
Early online date | 10 Mar 2020 |
Publication status | Published - Mar 2020 |
Abstract
Organic wastes from wholesale vegetable, fruit, and flower markets are one among the major sources of centralized waste generation in urban cities, which are predominantly disposed at dumpsites. Sustainable solution for the effective treatment and disposal of these wastes from Indian urban centers needs to be explored. Anaerobic digestion (AD) process coupled with extrusion as a pretreatment prior to AD was studied to increase methane production from vegetable, fruit, and flower market wastes. The detailed waste characterization and bio-methane potential (BMP) tests of vegetable, fruit, and flower market wastes were carried out. From the results of BMP tests, the highest specific methane yield (SMY) of 332.7 mLN/g oDM (31% increase) was obtained for extruded fruit market wastes compared with non-extruded wastes, which showed SMY of 253.9 mLN/g oDM. Similarly, the SMY of vegetable and flower market wastes was significantly increased (p < 0.05) to 319.6 mLN/g oDM (+ 35.5%) and 188.1 mLN/g oDM (+ 42.3%), respectively, as a result of extrusion pretreatment. Further, AD of extruded wastes showed 11.4–17.2% increase in the oDM reduction in concurrence with the increased SMY. The energy potential of extruded and non-extruded wastes varied between 6.4–10.9 MJ/kg DM and 4.7–9.4 MJ/kg DM, respectively. In addition, from the profile of bio-methane production, it is observed that the extruded wastes reached 95% of SMY in 14–17 days unlike non-extruded wastes, which took 17–23 days to reach the same value thereby attaining steady-state condition faster than non-extruded wastes. Among the three models used, the logistic model showed best fit with R2 value of 0.96–0.98 with minimum SMY deviation < 2.8% than first-order kinetic and modified Gompertz models. Results of the study revealed that extrusion pretreatment of wholesale vegetable, fruit, and flower markets wastes prior to AD was found to be effective in increasing the methane production during anaerobic treatment of these wastes from urban centers.
Keywords
- Anaerobic digestion, Bio-methane potential tests, Energy, First-order kinetic model, Logistic model, Modified Gompertz model
ASJC Scopus subject areas
- Environmental Science(all)
- Environmental Engineering
- Environmental Science(all)
- Environmental Chemistry
- Environmental Science(all)
- Ecological Modelling
- Environmental Science(all)
- Water Science and Technology
- Environmental Science(all)
- Pollution
Sustainable Development Goals
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Water, Air, and Soil Pollution, Vol. 231, No. 3, 126, 03.2020.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Enhancement of Methane Production from Vegetable, Fruit and Flower Market Wastes Using Extrusion as Pretreatment and Kinetic Modeling
AU - Mozhiarasi, Velusamy
AU - Weichgrebe, Dirk
AU - Srinivasan, Shanmugham Venkatachalam
N1 - Funding Information: This work was funded by the German Federal Ministry of Education and Research (BMBF) and the Indian Department of Science and Technology (DST) under the Indo-German Science and Technology Centre (IGSTC) (Grant number 01DQ15007A) for the 2+2 Project “RESERVES—Resource and energy reliability by co-digestion of veg-market and slaughterhouse waste.”
PY - 2020/3
Y1 - 2020/3
N2 - Organic wastes from wholesale vegetable, fruit, and flower markets are one among the major sources of centralized waste generation in urban cities, which are predominantly disposed at dumpsites. Sustainable solution for the effective treatment and disposal of these wastes from Indian urban centers needs to be explored. Anaerobic digestion (AD) process coupled with extrusion as a pretreatment prior to AD was studied to increase methane production from vegetable, fruit, and flower market wastes. The detailed waste characterization and bio-methane potential (BMP) tests of vegetable, fruit, and flower market wastes were carried out. From the results of BMP tests, the highest specific methane yield (SMY) of 332.7 mLN/g oDM (31% increase) was obtained for extruded fruit market wastes compared with non-extruded wastes, which showed SMY of 253.9 mLN/g oDM. Similarly, the SMY of vegetable and flower market wastes was significantly increased (p < 0.05) to 319.6 mLN/g oDM (+ 35.5%) and 188.1 mLN/g oDM (+ 42.3%), respectively, as a result of extrusion pretreatment. Further, AD of extruded wastes showed 11.4–17.2% increase in the oDM reduction in concurrence with the increased SMY. The energy potential of extruded and non-extruded wastes varied between 6.4–10.9 MJ/kg DM and 4.7–9.4 MJ/kg DM, respectively. In addition, from the profile of bio-methane production, it is observed that the extruded wastes reached 95% of SMY in 14–17 days unlike non-extruded wastes, which took 17–23 days to reach the same value thereby attaining steady-state condition faster than non-extruded wastes. Among the three models used, the logistic model showed best fit with R2 value of 0.96–0.98 with minimum SMY deviation < 2.8% than first-order kinetic and modified Gompertz models. Results of the study revealed that extrusion pretreatment of wholesale vegetable, fruit, and flower markets wastes prior to AD was found to be effective in increasing the methane production during anaerobic treatment of these wastes from urban centers.
AB - Organic wastes from wholesale vegetable, fruit, and flower markets are one among the major sources of centralized waste generation in urban cities, which are predominantly disposed at dumpsites. Sustainable solution for the effective treatment and disposal of these wastes from Indian urban centers needs to be explored. Anaerobic digestion (AD) process coupled with extrusion as a pretreatment prior to AD was studied to increase methane production from vegetable, fruit, and flower market wastes. The detailed waste characterization and bio-methane potential (BMP) tests of vegetable, fruit, and flower market wastes were carried out. From the results of BMP tests, the highest specific methane yield (SMY) of 332.7 mLN/g oDM (31% increase) was obtained for extruded fruit market wastes compared with non-extruded wastes, which showed SMY of 253.9 mLN/g oDM. Similarly, the SMY of vegetable and flower market wastes was significantly increased (p < 0.05) to 319.6 mLN/g oDM (+ 35.5%) and 188.1 mLN/g oDM (+ 42.3%), respectively, as a result of extrusion pretreatment. Further, AD of extruded wastes showed 11.4–17.2% increase in the oDM reduction in concurrence with the increased SMY. The energy potential of extruded and non-extruded wastes varied between 6.4–10.9 MJ/kg DM and 4.7–9.4 MJ/kg DM, respectively. In addition, from the profile of bio-methane production, it is observed that the extruded wastes reached 95% of SMY in 14–17 days unlike non-extruded wastes, which took 17–23 days to reach the same value thereby attaining steady-state condition faster than non-extruded wastes. Among the three models used, the logistic model showed best fit with R2 value of 0.96–0.98 with minimum SMY deviation < 2.8% than first-order kinetic and modified Gompertz models. Results of the study revealed that extrusion pretreatment of wholesale vegetable, fruit, and flower markets wastes prior to AD was found to be effective in increasing the methane production during anaerobic treatment of these wastes from urban centers.
KW - Anaerobic digestion
KW - Bio-methane potential tests
KW - Energy
KW - First-order kinetic model
KW - Logistic model
KW - Modified Gompertz model
UR - http://www.scopus.com/inward/record.url?scp=85081613045&partnerID=8YFLogxK
U2 - 10.1007/s11270-020-04469-2
DO - 10.1007/s11270-020-04469-2
M3 - Article
AN - SCOPUS:85081613045
VL - 231
JO - Water, Air, and Soil Pollution
JF - Water, Air, and Soil Pollution
SN - 0049-6979
IS - 3
M1 - 126
ER -