Details
Original language | English |
---|---|
Pages (from-to) | 1560-1566 |
Number of pages | 7 |
Journal | Energy Technology |
Volume | 6 |
Issue number | 8 |
Early online date | 18 May 2018 |
Publication status | Published - 20 Aug 2018 |
Abstract
For over a decade now, the electrocaloric effect (ECE) and electrocaloric (EC) cooling have been the subject of increasing research activities. Research on electrocaloric materials (ECM) is quite advanced; however, significant progress on EC cooling systems is still missing. Therefore, a methodological approach for the structured development of EC cooling systems is presented here. It is based on the well-known V-Model and integrates different tools, as a classification of device types, influencing factors, and numerical simulation methods. The methodology can be used to structure development processes and to identify favorable geometrical and operating parameters of an EC cooling device. The methodology is validated with a demonstrator, which is designed, built, and practically tested for over 2000 h. With this small-scale device and a low electrical field strength of 3 kV mm−1, a temperature span of over 1.1 K could be achieved.
Keywords
- electrocaloric cooling, ferroic cooling, modeling, refrigeration, solid state physics
ASJC Scopus subject areas
- Energy(all)
- General Energy
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Energy Technology, Vol. 6, No. 8, 20.08.2018, p. 1560-1566.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Design Methodology for Electrocaloric Cooling Systems
AU - Blumenthal, Philipp
AU - Raatz, Annika
N1 - © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2018/8/20
Y1 - 2018/8/20
N2 - For over a decade now, the electrocaloric effect (ECE) and electrocaloric (EC) cooling have been the subject of increasing research activities. Research on electrocaloric materials (ECM) is quite advanced; however, significant progress on EC cooling systems is still missing. Therefore, a methodological approach for the structured development of EC cooling systems is presented here. It is based on the well-known V-Model and integrates different tools, as a classification of device types, influencing factors, and numerical simulation methods. The methodology can be used to structure development processes and to identify favorable geometrical and operating parameters of an EC cooling device. The methodology is validated with a demonstrator, which is designed, built, and practically tested for over 2000 h. With this small-scale device and a low electrical field strength of 3 kV mm−1, a temperature span of over 1.1 K could be achieved.
AB - For over a decade now, the electrocaloric effect (ECE) and electrocaloric (EC) cooling have been the subject of increasing research activities. Research on electrocaloric materials (ECM) is quite advanced; however, significant progress on EC cooling systems is still missing. Therefore, a methodological approach for the structured development of EC cooling systems is presented here. It is based on the well-known V-Model and integrates different tools, as a classification of device types, influencing factors, and numerical simulation methods. The methodology can be used to structure development processes and to identify favorable geometrical and operating parameters of an EC cooling device. The methodology is validated with a demonstrator, which is designed, built, and practically tested for over 2000 h. With this small-scale device and a low electrical field strength of 3 kV mm−1, a temperature span of over 1.1 K could be achieved.
KW - electrocaloric cooling
KW - ferroic cooling
KW - modeling
KW - refrigeration
KW - solid state physics
UR - http://www.scopus.com/inward/record.url?scp=85050640335&partnerID=8YFLogxK
U2 - 10.1002/ente.201800139
DO - 10.1002/ente.201800139
M3 - Article
AN - SCOPUS:85050640335
VL - 6
SP - 1560
EP - 1566
JO - Energy Technology
JF - Energy Technology
SN - 2194-4288
IS - 8
ER -